Survivors: The Animals and Plants that Time has Left Behind. Richard Fortey
in the sea; a time when a myriad trilobites scuttled in the mud alongside the forebears of the horseshoe crabs. The trundling, heaving, inelegant not-so-crabs along Delaware Bay are messengers from deep geological time.
A palaeontologist would naturally want to track the history of the horseshoe crabs back into the distant past. A few years ago I visited the famous quarries in Bavaria, southern Germany, where the Solnhofen Limestone of Jurassic age, 150 million years old, had been excavated. Great opencast pits scour the gently rolling countryside revealing thin slabs of cream-coloured limestone, where each bed represents the former sediment surface. The limestone provides the perfect fine-grained stone for the manufacture of lithographic printing plates; this is still a popular medium with artists today, but had an even greater use in the past for graphic illustration. The Germans called this kind of rock ‘plattenkalk’, which is an appropriate name because if a fossil turns up it will be laid out on the surface of the slab like a fish on a very flat plate; and some of the fossils are, indeed, those of fishes. The most famous fossils from the Solnhofen Limestone are skeletons belonging to the early bird Archaeopteryx lithographica, complete with feathers, but they are very rare – only one turns up in an average decade. Some other fossils are quite abundant, like those of little sea lilies (Saccocoma). The Solnhofen Limestone is thought to have accumulated in a warm lagoon, or a series of lagoons, not far from a biologically diverse land habitat, but with periodic influxes of waters from the sea. From time to time the lagoon became salty enough from evaporation to poison living organisms, and its deeper parts were depleted in oxygen sufficiently to deter scavengers. The result is the outstanding preservation of delicate animals. When sticky mud was exposed, animals could get trapped upon it, such as delicate flying reptiles or dragonflies. Operating together, these special conditions preserved a huge cross section of Jurassic life. One of these animals is a horseshoe crab called Mesolimulus walchi. It really is remarkably similar to our living Limulus polyphemus. At first glance it looks as if it had just wandered in from Delaware. One has to look hard to notice that its marginal spines are longer than in our living blue-bloods, and there are a few other minor differences. Nobody could doubt that this species, too, trundled through the shallows, nor that it carried its eggs under its head-shield. To that showy new upstart – a feathered bird – it may already have seemed archaic.
Up to this point I have avoided describing the horseshoe crab as a ‘living fossil’. This is not only because I am chary about using a phrase that is a paradox and an oxymoron rolled into one, but also because it is a misleading description. Charles Darwin himself was cautious when he introduced the term in the phrase quoted at the start of this book. Despite what I have just said about Mesolimulus it is not exactly the same as Limulus. Consider everything we have learned about our living horseshoe crab. It is woven deeply into an ecology that is utterly different from that in the Jurassic. Millions of birds of many species depend on the horseshoes’ eggs every year, whereas its old relative was probably irrelevant to the life cycle of what is often called ‘the first bird’. Limulus has adapted to many changes of circumstances: new predators, new climates, and now humankind. It is a winner in the lottery of life, and not just because of its long family tree. ‘Living fossil’ seems to imply a negative judgement somehow, as if the poor old organism was just about tottering along on its last legs, having hardly changed in tune with a changing world, awaiting an inevitable end. A similar misplaced judgemental tone is often applied to dinosaurs. ‘We mustn’t be dinosaurs! We must change with the times!’ is a mantra of commerce. The dinosaurs were actually superbly efficient animals, and their extinction was most likely a combination of external factors (a drastic meteorite impact is favoured by many) that had nothing to do either with their virtues or lack of them. They were animals of the wrong size living in the wrong places at the wrong time. Bad luck! Meanwhile, the living fossils trundled on through the crisis because … well, we will come to that.
Modifications are happening at the genomic level all the time. There really is no such thing as ‘no change’; the very flexibility of the DNA molecule is what has kept natural selection on its toes for thousands of millions of years. Nor is change in DNA necessarily related directly to any change in the appearance of an animal. Many mutations accumulate in the large fraction of the genome that apparently does not do much work in the specification of proteins, or initiating developmental changes, or any of the other vital, active stuff. These mutations might well be irrelevant to the kind of changes in shape or colour that indicate the appearance of new species. A living fossil may indeed have accumulated many changes at the molecular level that have not even been expressed in its surface appearance, which is the phenotype that has to face the world. Fluctuations in gene frequency are the stuff of life, but they don’t map one-to-one on skeletons and limbs, which are the usual stuff of fossils. So a little caution in terminology is wise.
There is also a temptation to think of the living fossil as if it were a true, surviving ancestor. When the coelacanth fish was discovered it was presented in the popular press as ‘old fourlegs’ as if it were just about to march onto land on its stumpy fins as a thoroughgoing tetrapod. Not only does this scenario happen to be wrong, but the likelihood of any such ancestor surviving unchanged to the present day through many millions of years is also exceedingly remote. Time, chance, and competition will see to it that change is inevitable. What can be said without demur is that the ancient survivor and its other living – and more evolutionarily advanced – relatives will have shared a common ancestor, and that the features of the living fossil will be closer to those of that ancestor. The discovery of ancient fossils more or less similar to the survivor will date the appearance of the whole animal group to which they belong, and point up the changes that must have happened through geological time along the subsequent branches of the evolutionary tree. The survivors from the early days carry with them a package of information revealing primitive morphology, development, and biochemistry that can illuminate histories that would otherwise be hidden from us. Fossils never preserve blue blood. The ‘living fossils’ may not be the ancestor, but they are survivors carrying a precious legacy of information from distant days and vanished worlds.
Hence Limulus allows us to understand something about deep branches in evolution. It is far from unique. If every descendant species had simply replaced its predecessor, the history of life would be like one of those patients described by Oliver Sacks who live perpetually in the present day, constantly erasing the memories of yesterday. Fortunately, life is not like that. Deep history is all around us. In the life of the planet, the latest model does not always invalidate the tried-and-tested old creature. Groups of organisms that originated long, long ago, in very different worlds, have been able to evolve and adapt alongside their more recent cousins and second cousins. The story of life is almost as much about accommodation as it is about replacement. To look at a living horseshoe crab is to see a portrait of a distant ancestor repainted by time, but with many of its features still unchanged. This book reflects my interest in living survivors from the geological past and what they can tell us about the course of evolution. I have spent the last few years seeking out animals and plants that have helped to illuminate our understanding of the history of life. Wherever possible, I have visited these organisms in their natural habitats; none has proved less than fascinating. Observing how they survive today has allowed me a glimpse of their biology and provided clues about the reasons for their longevity. I have carefully selected the old timers I visited because I wished to understand their biology in depth; I have had passing encounters with several more. A few organisms proved too rare or inaccessible for me to discover personally – the coelacanth comes to mind – and then I have relied on the accounts of others. I shall relate many of these case histories to those of their fossil relatives, which is only to be expected of a palaeontologist. This will illuminate the vital fourth dimension – time. I soon discovered that there were too many potential candidates for inclusion, and I am obliged to mention some of them only briefly. I believe it is better to deal with a smaller number of organisms in detail than swish around vaguely with a broad brush. My specialist friends will probably complain that I have left out their particular favourite beast or weed, and my answer is that these survivors have lasted so long that they will almost certainly still be around for someone else to champion in the future.
Consider scorpions, for example. In some ways they are as impressive as horseshoe crabs as survivors. I have met them several times in my fossil collecting career, usually hiding beneath a log or a rock, for many of them stalk their prey