Dry Store Room No. 1: The Secret Life of the Natural History Museum. Richard Fortey

Dry Store Room No. 1: The Secret Life of the Natural History Museum - Richard  Fortey


Скачать книгу
of the world where forest has been reduced by 25 per cent since the mid-1980s. Every species on Earth has a biography and each one is fascinating in its own way. There may be biologies in the deep sea about which we know nothing. Some of them may be useful to mankind in medicine, or in dealing with extreme conditions as we begin to stretch our metaphorical legs to climb to the stars. Who knows? If we allow species to disappear before they have a chance to tell us about themselves it will be a tragedy to add to the many that our species has already inflicted on the world. The first stage towards understanding is naming – to recognize that this creature before us is different from another already known. I believe we do not have a moral right to imperil the continuation of any species. Who are we, one species among so many, to obliterate the work of millions of years of evolution? Are we like the Greek gods acting on whimsy? Unfortunately, it is difficult to persuade everybody of this moral position. It appears on few political manifestos, except as a kind of harmless truism, vaguely akin to ‘we must be kind to pretty furry things’. It is so much more important than that. I don’t want the only record of a species to be on a video archive, or one of those gloomy, pallid faces peering out of a jar in the Spirit Collections.

      Now that it is clear that natural history museums have an increasingly important role in a world whose biodiversity is threatened, I should perhaps explain the nuts and bolts of naming animals and plants. Readers who are gardeners or ornithologists will be accustomed to calling their plants or birds by scientific names. These names provide a common language for all biologists around the world, because they are the official name, the agreed nomenclature. If the name Larus ridibundus is used by a Japanese, an American or even an inhabitant of the Philippines, it is the same bird species that is being identified, regardless of the local name; ‘black-headed gull’ just happens to be our British local name for this particular bird, but few Englishmen would know what the Japanese might call it. Different gull species would be just as precisely specified by their scientific names: Larus argentatus (our herring gull), Larus atricilla (laughing gull to an Australian) and so on. Plants can have many different vernacular names for the same species, even within the same country. In his magisterial Flora Britannica Richard Mabey tells us that Cow Parsley is known as Queen Anne’s lace, kex, kecksie, mummy die, grandpa’s pepper, badman’s oatmeal, blackman’s tobacco and rabbit meat. Anthriscus sylvestris may lack the charm of these local names, but it means the same to all interlocutors, regardless of their origin. The scientific name for a species has to be a unique two words, or binomial, so it differs from human names in this respect, where there is no limit to the number of John Smiths. The name has two parts: first, the genus (or generic) name which is invariably capitalized; the second, the species (or specific) name, which is never capitalized even if it obviously named after a person – as in johnsmithi. The latter is a convention, as is the italicization of the scientific name, which readily allows recognition of a scientific appellation in a sheet of printed text. When the same generic name appears in a list, it is customary to abbreviate it to the initial letter, as, for example, in remarking that a collection of birds’ eggs included examples of those of Larus ridibundus, L. atricilla and L. argentatus.

      If no two animals may have the same scientific name, neither may any two plants. I do not believe it is against the rules to use the same name for a plant and an animal since there is little chance of confusing an ant with a liana. I have toyed with the idea of naming a trilobite Chrysanthemum just to be mischievous. A unit of classification is a taxon (the plural is taxa), and that is why the business of naming them is taxonomy. Scientific names have a long tradition of taking Latin or Greek form. This goes back to the days when scientific communication was in Latin, as the language understood by the intellectual classes across Europe. In the early eighteenth century descriptions and names of plants and animals were often rather unwieldy slabs of Latin. The present simple system of naming and classifying animals and plants was developed in the eighteenth century by the Swede, Carl von Linné, who is himself nearly always latinized to Linnaeus: he it was who showed the utility of the binomial to characterize the species of the living world.

      Linnaeus’ tercentenary was in 2007. As part of the celebrations I was asked to reply to a speech given at the Linnean Society of London by His Imperial Majesty Emperor Akihito of Japan. Thanks to Linnaeus, His Majesty was able to talk to his fellow ichthyologists about his favorite organisms, small fishes called gobies. I was told that the trees in the Imperial Garden are labelled with their scientific names. We all understood one another, and everyone smiled. Linnaeus worked in his maturity in the charming and ancient city of Uppsala; his system triumphed because of its utility and comprehensiveness. He developed his ideas in plant classification as a young man during travels to Lappland – then a daring undertaking. A quirky portrait of him dressed in Lappish robes was actually painted in Amsterdam a few years later, but it does seem that, like Darwin on The Beagle, a youthful adventure set him on the course to greatness. His classification of plants was based on such features as counting the number of stamens – it was a sexual system. Some young ladies were forbidden to study it because it might bring a blush to their delicate cheeks. Linnaeus’ mission to classify knew no bounds: he moved from plants to animals. Deus crevait, Linnaeus disposuit (God created, Linnaeus organized) served as his motto. He distributed his binomials far and wide. The Botanical Garden he laid out in Uppsala, with neat beds arranged according to his system, is still in good order. It ought to be one of the holy places for scientists to visit. Even if the simple sexual system has now been superseded the legacy of the names lives on. Linnaeus’ higher and more inclusive levels of organizing organisms into Order and Class and Kingdom are also still used as part of the hierarchy of the system. The labels on the cupboards that I passed in my peripatetic passage around the Natural History Museum were mostly family names, and the family originated as a unit of classification slightly later.* Inside a given cupboard the curator might have placed a number of species belonging to several genera, all embraced by the family whose name is on the door. It is, if you like, a sophisticated filing system, and if you have millions of specimens the necessity of a filing system that works is patently obvious. I will leave until later in this chapter the question of what the filing system actually means in terms of evolution and ancestry, since Linnaeus lived and worked in a pre-Darwinian world, although I should say that like all taxonomists he used the features of the plant or animal concerned as the basis for his classification. The convention of using Latin and Greek for names was easy work for the early taxonomists. Most of them had been educated in the classics, and they knew their way around mythology and literature. Quite soon a whole dictionary of gods, goddesses, nymphs and satyrs had been recruited to label the natural world, mostly as generic names. Daphne is a flowering shrub, Daphnia is a water flea; Daphne herself was a nymph pursued by Apollo, and changed into a bay tree, as always seemed to be happening in those days. The bay tree itself is Laurus nobilis, ‘noble’ because the aromatic leaves were used to crown the brows of heroes.

      Like nobilis, species names often were, and still are, epithets describing some salient feature of the animal or plant in question. A very beautiful plant might be the species magnifica, a very ugly one the species horrida. The specific names can be much more complicated, produced by splicing several Latin words together, so that a species with bright green leaves might be viridifolia, or one with leaves resembling the skin of a crocodile crocodilifolia; this complexity is fortunate, since a very large number of names are needed to accommodate all the beetles. It is necessary for the describer to have at least some knowledge of the classical languages because of the rule that genera have gender – masculine, feminine or neuter – and the species name should therefore agree in gender with that of its genus. The suffix on a genus -us is masculine and requires a matching -us on the species. The suffix -a is feminine, so that a commonly cultivated shrub originating from South America is Fuchsia magellanica and not Fuchsia magellanicus; -um is a neutral ending. Incidentally, Fuchsia is named after a famous herbalist, Leonhard Fuchs, who illustrated plants most decoratively two centuries before Linnaeus, and although Fuchs was evidently male, the genus named for him is female. This paradoxical practice is very common in botany: the well-known names Forsythia, Buddleia and Sequoia are comparable cases. To add a little Gormenghast to the nomenclatural mixture, Fuchsia (not italicized) was a decidedly female character


Скачать книгу