Удовольствие от X. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире. Стивен Строгац

Удовольствие от X. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире - Стивен Строгац


Скачать книгу
несмотря на столь бесконечную перспективу, наше творчество всегда имеет какие-то ограничения. Мы можем решить, что подразумеваем под 6 и +, но как только это сделаем, результаты выражений, подобных 6 + 6, окажутся вне нашего контроля. Здесь логика не оставит нам выбора. В этом смысле математика всегда включает в себя как изобретение, так и открытие: мы изобретаем концепции, но открываем их последствия. Как станет ясно из следующих глав, в математике наша свобода заключается в возможности задавать вопросы и настойчиво искать на них ответы, однако не изобретая их самостоятельно.

      2. Каменная арифметика

      Как и любое явление в жизни, арифметика имеет две стороны: формальную и занимательную (или игровую).

      Формальную часть мы изучали в школе. Там нам объясняли, как работать со столбцами чисел, складывая и вычитая их, как перелопачивать их при выполнении расчетов в электронных таблицах при заполнении налоговых деклараций и подготовки годовых отчетов. Эта сторона арифметики кажется многим важной с практической точки зрения, но совершенно безрадостной.

      С занимательной стороной арифметики можно познакомиться только в процессе изучения высшей математики{3}. Тем не менее, она так же естественна, как и любопытство ребенка{4}.

      В эссе «Плач математика» Пол Локхарт предлагает изучать числа на более конкретных, чем обычно, примерах: он просит, чтобы мы представили их в виде некоторого количества камней. Например, число 6 соответствует вот такому набору камешков:

      Вы вряд ли увидите тут что-то необычное. Так оно и есть. Пока мы не приступим к манипуляциям с числами, они выглядят примерно одинаково. Игра начинается, когда мы получаем задание.

      Например, давайте посмотрим на наборы, в которых есть от 1 до 10 камней, и попробуем сложить из них квадраты. Это можно сделать только с двумя наборами – из 4 и 9 камней, поскольку 4 = 2 × 2 и 9 = 3 × 3. Мы получаем эти числа путем возведения в квадрат некоего другого числа (то есть раскладывая камни в виде квадрата).

      Вот задача, имеющая большее число решений: надо узнать, из каких наборов получится прямоугольник, если разложить камни в два ряда с равным количеством элементов. Здесь подойдут наборы из 2, 4, 6, 8 или 10 камней; число должно быть четным. Если мы попробуем разложить в два ряда оставшиеся наборы с нечетным количеством камней, то у нас неизменно будет оставаться лишний камень.

      Но не все потеряно для этих неудобных чисел! Если взять два таких набора, то лишние элементы найдут себе пару, и сумма получится четной: нечетное число + нечетное число = четное число.

      Если распространить эти правила на числа, идущие после 10, и считать, что количество рядов в прямоугольнике может быть больше двух, то некоторые нечетные числа позволят сложить такие прямоугольники. Например, число 15 может составить прямоугольник 3 × 5.

      Поэтому


Скачать книгу

<p>3</p>

Написанием данной главы я во многом обязан двум замечательным книгам: полемическому эссе P. Lockhart, A Mathematician’s Lament (Bellevue Literary Press, 2009) и роману Y. Ogawa, The Housekeeper and the Professor (Picador, 2009).

Прим. ред.: Об эссе Локхарда «Плач математика» сказано в комментарии 1. Перевода романа Ёко Огавы на русский язык пока нет.

<p>4</p>

Молодым читателям, которые хотят изучать числа и их структуры, см. H. M. Enzensberger, The Number Devil (Holt Paperbacks, 2000).

Прим. ред.: Среди многочисленных русских книг о началах математики, нестандартных подходах к ее изучению, развитии математического творчества у детей и тому подобных тем, созвучных следующим главам книги, укажем пока следующие: Пухначев Ю., Попов Ю. Математика без формул. М.: АО «Столетие», 1995; Остер Г. Задачник. Ненаглядное пособие по математике. М.: АСТ, 2005; Рыжик В. И. 30 000 уроков математики: Книга для учителя. М.: Просвещение, 2003: Тучнин Н. П. Как задать вопрос? О математическом творчестве школьников. Ярославль: Верх. – Волж. кн. изд-во, 1989.