The Periodic Table. Geoff Rayner-Canham
395–398 (1995).
19.L. C. Allen et al., “Van Arkel-Ketelaar Triangles,” J. Mol. Struct. 300, 647–655 (1993).
20.S. S. Ghule et al., “Synthesis, Physical Properties and Band Structure of Non-Magnetic Y3AlC,” Phys. B 498, 98–103 (2016).
21.S. Ullah et al., “Structural, Electronic and Optical Properties of AgXY2(X = Al, Ga, In and Y = S, Se, Te),” J. Alloys Compd. 617, 575–583 (2014).
22.G. Sproul, “Electronegativity and Bond Type: Predicting Bond Type,” J. Chem. Educ. 78(3), 387–390 (2001).
23.C. S. McCaw and M. A. Thompson, “A New Approach to Chemistry Education at Pre-University Level,” Nat. Chem. 1, 95–96 (2009).
24.J. Šima, “Oxidation Number: Issues of Its Determination and Range,” Found. Chem. 11, 135–143 (2009).
25.W. B. Jensen, “The Origin of the Oxidation State Concept,” J. Chem. Educ. 84(9), 1418–1419 (2007).
26.J. G. Calvert, “Glossary of Atmospheric Chemistry Terms (Recommendations 1990),” Pure Appl. Chem. 62(11), 2167–2219 (1990).
27.H-P. Loock, “Expanded Definition of the Oxidation State,” J. Chem. Educ. 88(3), 282–283 (2011).
28.W. B. Jensen, “Oxidation States versus Oxidation Numbers,” J. Chem. Educ. 88(12), 1599–1600 (2011).
29.J. M. Kauffman, “Simple Method for Determination of Oxidation Numbers in Compounds,” J. Chem. Educ. 63(6), 474–475 (1986).
30.A. A. Woolf, “Oxidation Numbers and Their Limitations,” J. Chem. Educ. 65(1), 45–46 (1988).
31.K. Pavel, P. McArdle, and J. Takats, “Comprehensive Definition of Oxidation State (IUPAC Recommendations 2016),” Pure Appl. Chem. 88(8), 831–839 (2016).
32.G. N. Lewis, “The Atom and the Molecule,” J. Am. Chem. Soc. 38(4), 762–785 (1916).
33.R. Schmid, “The Noble Gas Configuration — Not the Driving Force but the Rule of the Game in Chemistry,” J. Chem. Educ. 80(8), 931–937 (2003).
34.K. A. Waldron et al., “Screening Percentages Based on Slater Effective Nuclear Charge as a Versatile Tool for Teaching Periodic Trends,” J. Chem. Educ. 78(5), 635–639 (2001).
35.P. Cann, “Ionization Energies, Parallel Spins, and the Stability of Half-Filled Shells,” J. Chem. Educ. 77(8), 1056–1061 (2000).
36.R. L. Rich and R. W. Suter, “Periodicity and Some Graphical Insights on the Tendency toward Empty, Half-full, and Full Subshells,” J. Chem. Educ. 65(8), 702–704 (1988).
37.P. S. Matsumoto, “Trends in Ionization Energy of Transition-Metal Elements,” J. Chem. Educ. 82(11), 1660–1661 (2005).
38.P. F. Lang and B. C. Smith, “Ionization Energies of Atoms and Atomic Ions,” J. Chem. Educ. 80(8), 938–946 (2003).
39.J. C. Wheeler, “Electron Affinities of the Alkaline Earth Metals and the Sign Convention for Electron Affinity,” J. Chem. Educ. 74(1), 123–125 (1997).
40.D. W. Brooks et al., “Electron Affinity: The Zeroth Ionization Potential,” J. Chem. Educ. 50(7), 487–488 (1973).
41.E. C. M. Chen and W. E. Wentworth, “The Experimental Values of Electron Affinities: Their Selection and Periodic Behavior,” J. Chem. Educ. 52(8), 486–489 (1975).
42.R. T. Myers, “The Periodicity of Electron Affinity,” J. Chem. Educ. 67(4), 307–308 (1990).
43.J. L. Dye, “Alkali Metal Anions: An Unusual Oxidation State,” J. Chem. Educ. 54(6), 332–339 (1979).
44.J. L. Dye, “Compounds of Alkali Metal Anions,” Angew. Chem. Int. Ed. 18, 587–598 (1979).
45.R. Concepcion and J. L. Dye, “Li+(en)2∙Na−: A Simple Crystalline Sodide,” J. Am. Chem. Soc. 109, 7203–7204 (1987).
46.J. Kim et al., “Crystalline Salts of Na− and K− (Alkalides) That Are Stable at Room Temperature,” J. Am. Chem. Soc. 121(45), 10666–10667 (1999).
47.P. C. Too et al., “Hydride Reduction by a Sodium Hydride–DIodide Composite,” Angew. Chem. Int. Ed. 55(11), 3719–3723 (2016).
48.M. Y. Redko et al., “‘Inverse Sodium Hydride’: A Crystalline Salt That Contains H+ and Na−,” J. Am. Chem. Soc. 24(21), 5928–5929 (2002).
49.W. Biltz et al., “Über Wertigkeit und chemische Kompression von Metallen in Verbindung mit Gold,” Z. anorg. allgem. Chem. 236(1), 12–23 (1938).
50.M. Jansen, “The Chemistry of Gold as an