Linear Algebra. Richard C. Penney
id="u67297a7f-27d8-58d6-be46-9b77fb04d489">
Table of Contents
1 Cover
4 PREFACE
8 CHAPTER 1: SYSTEMS OF LINEAR EQUATIONS 1.1 THE VECTOR SPACE OF m × n MATRICES 1.2 SYSTEMS 1.3 GAUSSIAN ELIMINATION 1.4 COLUMN SPACE AND NULLSPACE Notes
9 CHAPTER 2: LINEAR INDEPENDENCE AND DIMENSION2.1 THE TEST FOR LINEAR INDEPENDENCE2.2 DIMENSION2.3 ROW SPACE AND THE RANK‐NULLITY THEOREMNotes
10 CHAPTER 3: LINEAR TRANSFORMATIONS3.1 THE LINEARITY PROPERTIES3.2 MATRIX MULTIPLICATION (COMPOSITION)3.3 INVERSES3.4 The LU Factorization3.5 THE MATRIX OF A LINEAR TRANSFORMATIONNote
11 CHAPTER 4: DETERMINANTS 4.1 DEFINITION OF THE DETERMINANT 4.2 REDUCTION AND DETERMINANTS 4.3 A FORMULA FOR INVERSES
12 CHAPTER 5: EIGENVECTORS AND EIGENVALUES 5.1 EIGENVECTORS 5.2 DIAGONALIZATION 5.3 COMPLEX EIGENVECTORS
13 CHAPTER 6: ORTHOGONALITY6.1 THE SCALAR PRODUCT IN6.2 PROJECTIONS: THE GRAM–SCHMIDT PROCESS6.3 FOURIER SERIES: SCALAR PRODUCT SPACES6.4 ORTHOGONAL MATRICES6.5 LEAST SQUARES6.6 QUADRATIC FORMS: ORTHOGONAL DIAGONALIZATION6.7 THE SINGULAR VALUE DECOMPOSITION (SVD)6.8 HERMITIAN SYMMETRIC AND UNITARY MATRICESNote
14 CHAPTER 7: GENERALIZED EIGENVECTORS7.1 GENERALIZED EIGENVECTORSEXERCISES7.2 CHAIN BASESNote
15 CHAPTER 8: NUMERICAL TECHNIQUES 8.1 CONDITION NUMBER 8.2 COMPUTING EIGENVALUES Notes
16 Index
List of Tables
1 Chapter 1TABLE 1.1 Profits: 2019
2 Chapter 3TABLE 3.1 Demand TableTABLE 3.2 Annual Fees: 2020–2025 (in thousands)
3 Chapter 5TABLE 5.1Gauss Auto Rental
List of Illustrations
1 Chapter 1FIGURE 1.1 Coordinates in .FIGURE 1.2 Vector Algebra.FIGURE 1.3 Example 1.1.FIGURE 1.4 Coordinates in .FIGURE 1.5 Dependence in .FIGURE 1.6 Three vectors in .FIGURE 1.7 Route map.FIGURE 1.8 Dominance in an extended family.FIGURE 1.9 Exercise 1.1.FIGURE 1.10 Exercise 1.43.FIGURE 1.11 Only one solution.FIGURE 1.12 Two planes.FIGURE 1.13 Solution set is a line.