Basic Electrical and Instrumentation Engineering. P. Sivaraman
slip ring induction motor.Figure 4.8 Typical slip ring and carbon brush arrangement.Figure 4.9 Direction of current flow in rotor circuit.Figure 4.10 Direction of current flow in rotor circuit.Figure 4.11 The relation of the rotor, resistance and reactance.Figure 4.12 Torque–Slip characteristics of an induction motor.Figure 4.13 Primary and secondary winding of the three-phase induction motor.Figure 4.14 Circuit diagram of an induction motor as transformer.Figure 4.15 Equivalent circuit diagram of an induction motor.Figure 4.16 Equivalent circuit of a rotor.Figure 4.17 Equivalent circuit.Figure 4.18 Equivalent circuit.Figure 4.19 Construction of the single-phase induction motor.Figure 4.20 Construction of rotor.Figure 4.21 Split-phase induction motor.Figure 4.22 The phase difference (α) between two currents.Figure 4.23 Speed vs. full load torque.Figure 4.24 Circuit diagram of capacitor-start induction motor.Figure 4.25 Voltage and current characteristics.Figure 4.26 Circuit diagram of capacitor-start and capacitor-run induction motor...Figure 4.27 Speed vs. full load torque.Figure 4.28 Construction of shaded-pole motor.Figure 4.29 Speed vs. full load torque.Figure 4.30 Three-phase induction motor with DOL starter.Figure 4.31 Practical DOL starter (Courtesy: Larson and Toubro Limited).Figure 4.32 Circuit diagram of primary resistor or reactor.Figure 4.33 Autotransformer starter.Figure 4.34 Star-Delta starter.Figure 4.35 Slip ring induction motor.Figure 4.36 Speed control of induction motor using auto transformer.Figure 4.37 Speed control of induction motor using primary resistorFigure 4.38 Stator frequency control.Figure 4.39 Schematic diagram of V/F control.Figure 4.40 Typical V/F controller. Courtesy: ABBFigure 4.41 Cascaded type speed control for slip ring induction motor.Figure 4.42 Speed control of slip ring induction motor by external resistance.Figure 4.43 Construction of synchronous motor.Figure 4.44 Step angle of stepper motor.Figure 4.45 Construction of BLDC motor.Figure 4.46 Arrangement of armature winding in the slot.Figure 4.47 Salient pole type rotor.Figure 4.48 Smooth cylindrical type rotor.Figure 4.49 Magnetic field.Figure 4.50 Flux linkage.Figure 4.51 Relationship between the load current and terminal voltage.
5 Chapter 5Figure 5.1 Classification of instruments.Figure 5.2 Tangent Galvanometer (Courtesy: Tangent Galvonometer, Magnetic Field ...Figure 5.3 Relationship of B and Bh.Figure 5.4 Rayleigh’s current balance.Figure 5.5 Analog signal.Figure 5.6 Digital signal.Figure 5.7 Controlling torque due to gravity.Figure 5.8 Spring control.Figure 5.9 Gravity control.Figure 5.10 Time vs. final deflection.Figure 5.11 Air friction damping.Figure 5.12 (a) Fluid friction damping. (b) Fluid friction damping.Figure 5.13 Eddy friction damping.Figure 5.14 D’Arsonval movement.Figure 5.15 DC ammeter.Figure 5.16 Multi-range DC ammeter.Figure 5.17 DC voltmeter.Figure 5.18 Multi-range voltmeter; (i) Parallel connection and (ii) Series conne...Figure 5.19 (a) Basic Ohmmeter Circuit Diagram.Figure 5.19 (b) Series type Ohmmeter. (c) Shunt type Ohmmeter.Figure 5.20 Electrodynamometer.Figure 5.21 Electrodynamometer ammeter circuit.Figure 5.22 Electrodynamometer in power measurement.Figure 5.23 Electrodynamometer Wattmeter.Figure 4.24 DC voltage measurement.Figure 5.25 AC voltage measurement.Figure 5.26 DC and AC voltage measurement.Figure 5.27 (a) and (b) Resistance measurement.Figure 5.28 Block diagram of cathode ray oscilloscope.Figure 5.29 Basic elements of storage mesh CRT.Figure 5.30 The charge pattern on a mesh storage.Figure 5.31 Phosphor storage oscilloscope.Figure 5.32 Images of CRO (Courtesy: Cathode Ray Oscilloscope, Product Type: Bio...Figure 5.33 Block diagram of digital storage oscilloscope.Figure 5.34 Waveform of digital storage oscilloscope.Figure 5.35 Digital storage oscilloscope (Courtesy: Digital Storage Oscilloscope...Figure 5.36 (a) and (b) Waveform of input vs. output.Figure 5.37 Galvonometer name plate (Courtesy: Galvanometer Analog Besto (311/31...Figure 5.38 Galvonometer (Courtesy: Galvanometer - Analog - BESTO (311/312 A)).Figure 5.39 Input vs. output of linearity.Figure 5.40 (a) Span drift. (b) Zero drift.Figure 5.41 Reproducibility.Figure 5.42 Image of stability measuring instruments (Courtesy: Stability Measur...Figure 5.43 Dynamic error.Figure 5.44 Flowchart of types of errors.Figure 5.45 Block diagram of measuring system.Figure 4.46 Block diagram of LVDT.Figure 5.47 Thermocouple.Figure 5.48 Strain gauge.Figure 5.49 Block diagram of transducer.Figure 5.50 Capacitive transducer.Figure 5.51 Parallel plate capacitance.Figure 5.52 Cylindrical capacitive transducer.Figure 5.53 Semicircular capacitive transducer.Figure 5.54 Dielectric placed between two plates.Figure 5.55 Inductive transducer.Figure 5.56 Self-inductance.Figure 5.57 Photoelectric transducer.Figure 5.58 Photoelectric transducer.Figure 5.59 Gas-filled phototube.Figure 5.60 Photo-multiplier tube.Figure 5.61 (a) Photo conductive cell. (b) Symbol.Figure 5.62 Photoconductive cell Illumination characteristics.Figure 5.63 Photovoltaic cell.Figure 5.64 P-N junction solar cell with resistive load.Figure 5.65 Quartz crystal.Figure 5.66 Diagram of piezoelectric transducer.Figure 5.67 Hall effect.Figure 5.68 Measurement of displacement.Figure 5.69 Measurement of current.
List of Tables
1 Chapter 2Table 2.2 Typical name plate rating of a transformer.
2 Chapter 3Table 3.1 Difference between lap winding and wave winding.
3 Chapter 4Table 4.1 Difference between salient and cylindrical type of rotor.
4 Chapter 5Table 5.1 Information about the electrical measuring instruments.Table 5.2 Methods of basic interpolation techniques.Table 5.3 Comparison of primary and secondary transducer.Table 5.4 Comparison of active and passive transducer.Table 5.5 The different types of thermistor.Table 5.6 Comparison analog transducer and digital transducer.Table 5.7 Comparison of transducer and inverse transducer.
Guide
1 Cover
6 Foreword
9 Index
Pages
1 v
2 ii
3 iii
4 iv
5 ix
6 xi
7 xiii
8 1
9 2
10 3
11 4
12