Molecular Biotechnology. Bernard R. Glick

Molecular Biotechnology - Bernard R. Glick


Скачать книгу
in yeast: the advent of fully humanized yeast. Curr. Opin. Biotechnol. 18:387–392.

      Heckman KL, Pease LR. 2007. Gene splicing and mutagenesis by PCR-driven overlap extension. Nat. Protoc. 2:924–932.

      Kaur J, Sharma R. 2006. Directed evolution: an approach to engineer enzymes. Crit. Rev. Biotechnol. 26:165–199.

      Keyt BA, Paoni NF, Refino CJ, Berleau L, Nguyen H, Chow A, Lai J, Peña L, Pater C, Ogez J, et al. 1994. A faster-acting and more potent form of tissue plasminogen activator. Proc. Natl. Acad. Sci. USA. 91:3670–3674.

      Kjeldsen T, Hach M, Balschmidt P, Havelund S, Pettersson AF, Markussen J. 1998. Prepro-leaders lacking N-linked glycosylation for secretory expression in the yeast Saccharomyces cerevisiae. Protein Expr. Purif. 14:309–316.

      Kurokawa Y, Yanagi H, Yura T. 2000. Overexpression of protein disulfide isomerase DsbS stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl. Environ. Microbiol. 66:3960–3965.

      Kwaks THJ, Otte AP. 2006. Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells. Trends Biotechnol. 24:137–142.

      Kwaks THJ, Sewalt RGAB, van Blokland R, Siersma TJ, Kasiem M, Kelder A, Otte AP. 2005. Targeting of a histone acetyltransferase domain to a promoter enhances protein expression levels in mammalian cells. J. Biotechnol. 115:35–46.

      Liu X, Constantinescu SN, Sun Y, Bogan JS, Hirsch D, Weinberg RA, Lodish HF. 2000. Generation of mammalian cells stably expressing multiple genes at predetermined levels. Anal. Biochem. 280:20–28.

      Lucas BK, Giere LM, DeMarco RA, Shen A, Chisholm V, Crowley CW. 1996. High-level production of recombinant proteins in CHO cells using a dicistronic DHFR intron expression vector. Nucleic Acids Res. 24:1774–1779.

      Majander K, Anton L, Antikainen J, Lang H, Brummer M, Korhonen TK, Westerlund-Wikström B. 2005. Extracellular secretion of polypeptides using a modified Escherichia coli flagellar secretion apparatus. Nat. Biotechnol. 23:475–481.

      Martinez-Morales F, Borges AC, Martinez A, Shanmugam KT, Ingram LO. 1999. Chromosomal integration of heterologous DNA in Escherichia coli with precise removal of markers and replicons used during construction. J. Bacteriol. 181:7143–7148.

      Miyazaki C, Iba Y, Yamada Y, Takahashi H, Sawada J, Kurosawa Y. 1999. Changes in the specificity of antibodies by site-specific mutagenesis followed by random mutagenesis. Protein Eng. 12:407–415.

      Murakami H, Hohsaka T, Sisido M. 2002. Random insertion and deletion of arbitrary number of bases for codon-based random mutation of DNAs. Nat. Biotechnol. 20:76–81.

      Ness JE, Welch M, Giver L, Bueno M, JCherry JR, Borchert TV, Stemmer WPC, Minshull J. 1999. DNA shuffling of subgenomic sequences of subtilisin. Nat. Biotechnol. 17:893–896.

      Palmeros B, Wild J, Szybalski W, LeBorgne S, Hernández-Chávez G, Gosset G, Valle F, Bolivar F. 2000. A family of removal cassettes designed to obtain antibiotic-resistance-free genomic modifications of Escherichia coli and other bacteria. Gene. 247:255–264.

      Pina AS, Lowe CR, Roque ACA. 2014. Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol. Adv. 32:366–381.

      Prasad JM, Migliorini M, Galisteo R, Strickland DK. 2015. Generation of a potent low density lipoprotein receptor-related protein 1 (LRP1) antagonist by engineering a stable form of the receptor-associated protein (RAP) D3 domain. J. Biol. Chem. 290:17262-

      Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C. 2002. Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol. 20:200–206.

      Qiu J, Swartz JR, Georgiou G. 1998. Expression of active human tissue-type plasminogen activator in Escherichia coli. Appl. Environ. Microbiol. 64:4891–4896.

      Robinson AS, Hines V, Wittrup KD. 1994. Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Bio/Technology. 12:381–384.

      Rogers S, Wells R, Rechsteiner M. 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 234:364–368.

      Rosano GL, Ceccarelli EA. 2014. Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol. 5:1–17.

      Schröder M. 2008. Engineering eukaryotic protein factories. Biotechnol. Lett. 30:187–196.

      Seo JH, Bailey JE. 1985. Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli. Biotechnol. Bioeng. 27:1668–1674.

      Shi X, Jarvis DL. 2007. Protein N-glycosylation in the baculovirus-insect cell system. Curr. Drug Targets. 8:1116–1125.

      Simmons LC, Yansura DG. 1996. Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli. Nat. Biotechnol. 14:629–634.

      Steinborn G, Gellissen G, Kunze G. 2007. A novel vector element providing multicopy vector integration in Arxula adeninivorans. FEMS Yeast Res. 7:1197–1205.

      Strausberg SL, Alexander PA, Gallagher DT, Gilliland GL, Barnett BL, Bryan PN. 1995. Directed evolution of a subtilisin with calcium-independent stability. Bio/Technology. 13: 669–673.

      Tobias JW, Schrader TE, Rocap G, Varshavsky A. 1991. The N-end rule in bacteria. Science. 254:1374–1377.

      Van Oers MM, Pijlman GP, Vlak JM. 2015. Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J. Gen. Virol. 96:6–23.

      Wang L, Brock A, Herberich B, Schultz PG. 2001. Expanding the genetic code of Escherichia coli. Science. 292:498–500.

      Wilkinson DL, Harrison RG. 1991. Predicting the solubility of recombinant proteins in Escherichia coli. Bio/Technology. 9:443–448.

      Wu X-C, Ye R, Duan Y, Wong S-L. 1998. Engineering of plasmin-resistant forms of streptokinase and their production in Bacillus subtilis: streptokinase with longer functional half-life. Appl. Environ. Microbiol. 64:824–829.

      Zhang G, Brokx S, Weiner JH. 2006. Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli. Nat. Biotechnol. 24:100–104.

      1. What DNA sequence elements are required for expression of a cloned gene in a prokaryotic host?

      2. What is a strong promoter? Why is a strong promoter not always desirable for expression of a cloned gene?

      3. What is a regulatable promoter? How is the E. coli lac promoter used to regulate the expression of a clone gene?

      4. The promoter for gene 10 of the E. coli bacteriophage T7 is an example of a strong promoter. How is it used to express a cloned gene?

      5. Why is codon optimization often required for production of high levels of a recombinant protein?

      6. What are inclusion bodies, and how can their formation be avoided?

      7. How can a protein of interest be engineered to be secreted to the medium by E. coli?

      8. Discuss some strategies to purify a recombinant protein produced in a prokaryotic host. Consider that a protein may be used as a human therapeutic agent.

      9. Why is it sometimes advantageous to integrate a target gene into the chromosomal DNA of a prokaryotic host? How might this be achieved?

      10. During the course of integrating a target gene into the chromosomal DNA of the host bacterium, a marker gene may also be inserted into the chromosomal DNA. What strategy could be used to excise only the marker gene?

      11. What are the major posttranslational modifications of eukaryotic proteins in the endoplasmic reticulum and Golgi apparatus?

      12. Describe the features of a eukaryotic expression vector.

      13. What criteria are used to decide if a particular recombinant protein should be produced in


Скачать книгу