Secondary Metabolites of Medicinal Plants. Bharat Singh

Secondary Metabolites of Medicinal Plants - Bharat Singh


Скачать книгу
A. and Rosquete, C. (1988). Flavonoides de la Ageratina stevioides (Steyermark) R.M. King and H. Robinson. Rev. Latinoam. Quím. 19: 47–49.

      21 Morales, A. and Rosquete, C. (1990). Terpenoides de la Ageratina stevioides (Steyermark) R.M. King and H. Robinson. Rev. Latinoam. Quím. 21: 29–32.

      22 Morán-Pinzón, J., Mondolis, E., Abad, A. et al. (2017). Vasorelaxan effect and potent antioxidant activity of natural flavones isolated from Lourteigia stoechadifolia and Ageratina stevioides, two Venezuelan plants. Eur. J. Med. Plants 18: 1–10.

      23 Ochoa-Villarreal, M., Howat, S., Hong, S. et al. (2016). Plant cell culture strategies for the production of natural products. BMB Rep. 49: 149–158.

      24 Rajalakshmi, P., Sumathi, V., and Pugalenthi, M. (2016). Antioxidant activity of Erigeron karvinskianus DC. and Ageratina adenophora (Spreng.) King (leaves). Int. J. Food Sci. Nutr. 1: 64–68.

      25 Ramirez-Lopez, C., Garcia-Sanchez, E., Martinez-Munoz, R.E., and Pacheco, M.M. (2016). Chemical composition of the essential oil from Ageratina jocotepecana and its repellent effect on drywood termite Incisitermes marginipennis. Bol. Latinoam. Caribe Plant. Med. Aromat. 15: 53–60.

      26 Romero, C., Zamilpa, A., González, C. et al. (2013). Pharmacological and chemical study to identify wound-healing active compounds in Ageratina pichinchensis. Planta Med. 79: 622–627.

      27 Romero-Cerecero, O., Rojas, G., Navarro, V. et al. (2006). Effectiveness and tolerability of a standardized extract from Ageratina pichinchensis on patients with tinea pedis: an explorative pilot study controlled with ketoconazole. Planta Med. 72: 1257–1261.

      28 Romero-Cerecero, O., Zamilpa, A., Jiménez-Ferrer, J.E. et al. (2008). Double-blind clinical trial for evaluating the effectiveness and tolerability of Ageratina pichinchensis extract on patients with mild to moderate onychomycosis. A comparative study with ciclopirox. Planta Med. 74: 1430–1435.

      29 Romero-Cerecero, O., Román-Ramos, R., Zamilpa, A. et al. (2009). Clinical trial to compare the effectiveness of two concentrations of the Ageratina pichinchensis extract in the topical treatment of onychomycosis. J. Ethnopharmacol. 126: 74–78.

      30 Romero-Cerecero, O., Zamilpa-Álvarez, A., Ramos-Mora, A. et al. (2011). Effect on the wound healing process and in vitro cell proliferation by the medicinal Mexican plant Ageratina pichinchensis. Planta Med. 77: 979–983.

      31 Romero-Cerecero, O., Zamilpa, A., Díaz-García, E.R., and Tortoriello, J. (2014). Pharmacological effect of Ageratina pichinchensis on wound healing in diabetic rats and genotoxicity evaluation. J. Ethnopharmacol. 156: 222–227.

      32 Romero-Cerecero, O., Zamilpa, A., and Tortoriello, J. (2015). Ageratina pichinchensis was effective in therapeutic treatment in patients with minor recurrent aphthous stomatitis. J. Ethnopharmacol. 173: 225–230.

      33 Shen, J., Li, X., Wang, D., and Lu, H. (2007). In vitro culture of croftonweed (Ageratina adenophora): considerable potential for fast and convenient plantlet production. Weed Technol. 21: 445–452.

      34 Subba, B. and Kandel, R.C. (2012). Chemical composition and bioactivity of essential oil of Ageratina adenophora from Bhaktapur District of Nepal. J. Nepal Chem. Soc. 30: 78–86.

      35 Tamayo-Castillo, G., Jakupovic, J., Bohlmann, F. et al. (1988). Germacranolides and other constituents from Ageratina species. Phytochemistry 27: 2893–2897.

      36 Tamayo-Castillo, G., Jakupovic, J., Bohlmann, F. et al. (1989). Ent-clerodane derivatives and other constituents from representatives of the subgenus Ageratina. Phytochemistry 28: 139–141.

      37 Tori, M., Ohara, Y., Nakashima, K., and Sono, M. (2001). Thymol derivatives from Eupatorium fortunei. J. Nat. Prod. 64: 1048–1051.

      38 Torrenegra, R., Robles, J., Pedrozo, J., and Pescador, B. (1999). A new diglycoside of diterpene from Ageratina vacciniaefolia. Molecules 4: M94.

      39 Torres, L., Rojas, J., Morales, A. et al. (2013). Chemical composition and evaluation of antibacterial activity of essential oils of Ageratina jahnii and Ageratina pichinchensis collected in Mérida, Venezuela. Bol. Latinoam. Caribe Plant. Med. Aromat. 12: 92–98.

      40 Torres, L., Rojas, J., Rondón, M. et al. (2017). Insecticide activity of Ageratina jahnii and Ageratina pichinchensis (Asteraceae) against Lutzomyia migonei (Diptera: Psychodidae). Adv. Biomed. Res. 6: 53.

      41 Wang, M.-Z., Cai, X.-H., Du, G.-S., and Luo, X.-D. (2007). A novel norditerpene from Eupatorium adenophorum. Z. Naturforsch. B 62: 577–579.

      42 Wu, T.J. and Yang, G.Z. (1994). Chemical constituents of the essential oil of Eupatorium adenophorum Spreng. J Central China Normal Univ. (Nat. Sci. Ed.) 28: 87–90.

      43 Xie, L.J., Zeng, R.S., Bi, H.H. et al. (2010). Allelochemical mediated invasion of exotic plants in China. Allelopathy J. 25: 31–50.

      44 Xu, Y.L., Shan, X.Z., and Wang, Z.Y. (1988). The first report on the chemical constituents of Eupatorium adenophorum. Acta Bot. Yunnanica 10: 238–241.

      45 Yang, S.-L., King, R.A., and Roberts, M.F. (1990). The flavonoids of Ageratina deltoidea. Biochem. Syst. Ecol. 18: 485–486.

      46 Yu, S., Fang, N., and Mabry, T.J. (1986). Flavonoids from Ageratina saltillensis. J. Nat. Prod. 49: 1178–1179.

      47 Zhang, M., Liu, W.-X., Zheng, M.-F. et al. (2013). Bioactive quinic acid derivatives from Ageratina adenophora. Molecules 18: 14096–14104.

      48 Zhengfang, Z., Guangzhong, Y., and Guoqiang, L. (1997). Studies on the chemical constituents of Eupatorium adenophorum Spreng. Nat. Prod. Res. Dev. 9: 35–39.

      49 Zhou, Z.Y., Liu, W.X., Pei, G. et al. (2013). Phenolics from Ageratina adenophora roots and their phytotoxic effects on Arabidopsis thaliana seed germination and seedling growth. J. Agric. Food. Chem. 61: 11792–11799.

      50 Zhu, Z.F., Yang, G.Z., and Li, G.Q. (1995). Studies on the pesticide biological activity substances from plants (III): studies on the chemical constituents of Eupatorium adenophorum Spreng. J. Central China Normal Univ. (Nat. Sci. Ed.) 29: 215–217.

      2.7.1 Ethnopharmacological Properties and Phytochemistry

      Ageratum conyzoides L. (Fam. – Asteraceae) is an annual, branched, height up to 1 m with hairy ovate leaves; is used as purgative, febrifuge, and to treat ulcers as well as cleaning and healing of wounds (Kerharo and Adam 1974), skin and mental problems, headaches and dyspnea (Durodola 1977). It is used as anti-asthmatic, antispasmodic, and hemostatic agent (Kokwaro 1976). The aerial parts are used to treat uterine troubles as well as pneumonia by rubbing on the chest of patients (Katsuri et al. 1973; Abbiw 1990), and leprosy in India (Katsuri et al. 1973). The A. conyzoides showed anti-inflammatory, analgesic, antidiarrheal, insecticidal, antitumor (Sharma and Sharma 1995; Moreira et al. 2007; Adebayo et al. 2010a; Acheampong et al. 2015), antioxidant, gastroprotective, and cytotoxic effects (Galati et al. 2001; Shirwaikar et al. 2003; Preeti et al. 2009; Adebayo et al. 2010b).

      The hexane extract of A. conyzoides showed the presence of 5,6,7,8,3,4,5-heptamethoxyflavone; 5,6,7,8,3-pentamethoxy-4,5-methylenedioxyflavone and coumarin; 5,6,7,8,3-pentamethoxy-4,5-ethylenedioxyflavone; 5,6,7,8,3,4,5-heptamethoxyflavone, ageratochromene and 7-methoxy-2,2-dimethylchromene (Aalbersberg and Singh 1991; Moreira et al. 2007), methoxyflavones, 5,6,8,3′,4′,5′-hexamethoxyflavone and 8-hydroxy-5,6,7,3′,4′,5′-hexamethoxyflavone (González et al. 1991a; Dũng et al. 1989), 5,6,7,3′,4′,5′-hexamethoxyflavone, 5,6,7,8,3′,4′-hexamethoxyflavone, 5,6,7,8,3′,4′,5′-heptamethoxyflavone, 5,6,7,3′, 4′-pentamethoxyflavone, 5,6,7,3′-tetramethoxy-4′,5′-methylenedioxyflavone (Acheampong et al. 2017), ageratochromene, β-caryophyllene, demethoxyageratochromene (Sundufu and Shoushan 2004), (2S)-7,3′,4′-trimethoxyflavanone, (2S)-7-methoxy-3′,4′-methylenedioxyflavone, 5,6,7,8,5′-pentamethoxy-3′,4′-methylenedioxyflavone, 5,2′-dihydroxy-7-methoxyflavone, 2′-O-β-D-glucopyranoside and kaempferol-3-O-α-L-rhamnopyranoside (Munikishore et al. 2013), and 5,6,7,3′,4′,5-hexamethoxyflavone (Horie


Скачать книгу