Quantum Mechanics, Volume 3. Claude Cohen-Tannoudji

Quantum Mechanics, Volume 3 - Claude Cohen-Tannoudji


Скачать книгу
is still present for a single particle, since making g = 0 in (57) does not change this potential. For g = 0, the Gross-Pitaevskii equation simply reduces to the standard Schrödinger equation, valid for a single particle.

      3 3 or not at all, if we suppose the functions ul(r, z) and ul′(r, z) to be equal.

      4 4 When several relaxation channels are present, the one associated with the lowest barrier mainly determines the time evolution.

      Complement EXV Fermion system, Hartree-Fock approximation

      1  1 Foundation of the method 1-a Trial family and Hamiltonian 1-b Energy average value 1-c Optimization of the variational wave function 1-d Equivalent formulation for the average energy stationarity 1-e Variational energy 1-f Hartree-Fock equations

      2  2 Generalization: operator method 2-a Average energy 2-b Optimization of the one-particle density operator 2-c Mean field operator 2-d Hartree-Fock equations for electrons 2-e Discussion

      Introduction

      The Hartree-Fock method is based on the variational approximation (Complement EXI), where we choose a trial family of state vectors, and look for the one that minimizes the average energy. The chosen family is the set of all possible Fock states describing the system of N fermions. We will introduce and compute the “self-consistent” mean field in which each electron moves; this mean field takes into account the repulsion due to the other electrons, hence justifying the central field method discussed in Complement AXIV. This method applies not only to the atom’s ground state but also to all its stationary states. It can also be generalized to many other systems such as molecules, for example, or to the study of the ground level and excited states of nuclei, which are protons and neutrons in bound systems.

      This complement presents the Hartree-Fock method in two steps, starting in § 1 with a simple approach in terms of wave functions, which is then generalized in § 2 by using Dirac notation and projector operators. The reader may choose to go through both steps or go directly to the second. In § 1, we deal with spinless particles, which allows discussing the basic physical ideas and introducing the mean field concept keeping the formalism simple. A more general point of view is exposed in § 2, to clarify a number of points and to introduce the concept of a one-particle (with or without spin) effective Hartree-Fock Hamiltonian. This Hamiltonian reduces the interactions with all the other particles to a mean field operator. More details on the Hartree-Fock methods, and in particular their relations with the Wick theorem, can be found in Chapters 7 and 8 of reference [5].

      Let us first expose the foundation of the Hartree-Fock method in a simple case where the particles have no spin (or are all in the same individual spin state) so that no spin quantum number is needed to define their individual states, specified by their wave functions. We introduce the notation and define the trial family of the N-particle state vectors.

      We choose as the trial family for the state of the N-fermion system all the states that can be written as:

      where image are the creation operators associated with a set of normalized individual states |θ1〉, |θ2〉, |θN〉, all orthogonal to each other (and hence distinct). The state image is therefore normalized to 1. This set of individual states is, at the moment, arbitrary; it will be determined by the following variational calculation.

      The system Hamiltonian is the sum of


Скачать книгу