An Introduction to the Finite Element Method for Differential Equations. Mohammad Asadzadeh

An Introduction to the Finite Element Method for Differential Equations - Mohammad Asadzadeh


Скачать книгу
alt="equation"/>

      Finally, one should model the friction forces acting on the string segment. We shall assume a linear law of friction of the form:

      (1.5.25)equation

      Now applying Newton's second law yields

      Dividing (1.5.26) by images and letting images, we obtain the equation

      (1.5.27)equation

      Letting images and images we end up with the following concise form:

      Equation (1.5.28) describes the vibration of the considered string once it is set into motion. The smallness assumption here results in a single linear equation for images. Due to the presence of the friction term images, Eq. (1.5.28) is often referred to as the damped one‐dimensional wave equation. If friction is negligible, then we can let images and get the inhomogeneous wave equation

      (1.5.29)equation

      In the absence of external forces and when the weight of the string is negligible, we may take images to get the one‐dimensional wave equation:

      (1.5.30)equation

      Note that since images has the unit of length images, images has the unit of acceleration and images the unit of images, hence, images has the unit of velocity.

      1.5.4 Exercises

      1 Problem 1.8 Show that satisfies Laplace's equation for .

      2 Problem 1.9 Show that satisfies Laplace's equation , for .

      3 Problem 1.10 Show that satisfies the Laplace equation in polar coordinates:

      4 Problem 1.11 Verify thatboth satisfy the Laplace equation, and sketch the curves constant and constant. Show that

      5 Problem 1.12 Show that satisfies the heat equation for .

      6 Problem 1.13 Show that satisfies the heat equation , for .

      7 Problem 1.14 The spherically symmetric form of the heat conduction equation is given byShow that satisfies the standard one‐dimensional heat equation.

      8 Problem 1.15 Show that the equationcan be reduced to the standard heat conduction equation by writing . How do you interpret the term ?

      9 Problem 1.16 Use the substitution to transform the one‐dimensional convection–diffusion equationinto a heat equation for .

      10 Problem 1.17 If , let satisfyDerive the identity

      11 Problem 1.18 Find the possible values of and in the expression such that it satisfies the wave equation

      12 Problem 1.19 Taking , where is any function, find the values of that will ensure satisfies the wave equation

      13 Problem 1.20 The spherically symmetric version of the wave equation takes the formShow, by putting , that it has a solution of the form

      14 Problem 1.21 Let and . Use the chain rule to show that

      15 Problem 1.22 Show that the solution of the initial value problemsatisfies d'Alembert's formula:

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7R9mUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAOUAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABJbWcgAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAEAAAAAAA9wcmludFBy b29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAAAAAAAApwcm9vZlNldHVwAAAA AQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZDTVlLADhCSU0EOwAAAAACLQAA ABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABDcHRuYm9vbAAAAAAAQ2xicmJv b2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jvb2wAAAAAAExibHNib29sAAAA AABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAAAABCY2tnT2JqYwAAAAEAAAAA AABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBkb3ViQG/gAAAAAAAAAAAAQmwg IGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiNSbHQAAAAAAAAAAAAAAABCbGQgVW50RiNSbHQAAAAA AAAAAAAAAABSc2x0VW50RiNQeGxAcsAAAAAAAAAAAAp2ZWN0b3JEYXRhYm9vbAEAAAAAUGdQc2Vu dW0AA

Скачать книгу