Principles of Virology. Jane Flint

Principles of Virology - Jane Flint


Скачать книгу
internal components of influenza A virus particles differ radically: they comprise not a single nucleocapsid but multiple ribonucleoproteins, one for each of the 8 molecules of the segmented RNA genome present in an infectious virus particle (Appendix, Fig. 15). Furthermore, with the exception of terminal sequences, the RNA in these ribonucleoproteins is fully accessible to solvent, suggesting that the RNA is not sequestered in the interior of the ribonucleoprotein. The architectures of ribonucleoproteins released from influenza A virus particles determined by cryo-EM or scanning transmission EM tomography are consistent with such a model: the ribonucleoprotein comprises a double helix of NP molecules connected at one end by an NP loop, often with a molecule of the viral RNA polymerase bound at the other end (Fig. 4.8A). The RNA is bound along the exposed surfaces of the NP strands with some sequences in each RNA segment more tightly associated than others (Fig. 4.8B).

      The examples presented above illustrate the diversity possible when viruses with simple helical symmetry possess an envelope. Exceptionally large examples include the (+) strand RNA virus potato virus Y, up to 900 nm in length, and bacterial inoviruses, some twice as long, that contain single-stranded DNA genomes. Nevertheless, helical viruses are limited in size. Because helical structures are “open,” some property other than symmetry must limit the size of helical viruses, perhaps the nature of their genomes (see Chapter 3) or susceptibility to shear forces.

image

       General Principles


Скачать книгу