Continuous Functions. Jacques Simon

Continuous Functions - Jacques Simon


Скачать книгу
f06_Inline_xv_13.jpg space f06_Inline_xv_11.jpg with uniformly continuous bounded derivatives, and the case m = ∞ f06_Inline_xv_14.jpg space of continuous functions with compact support f06_Inline_xv_15.jpg id. m times continuously differentiable, and the case m = ∞

      OPERATIONS ON A FUNCTION f

f06_Inline_xv_16.jpg extension by 0E
f06_Inline_xv_17.jpg image under permutation of variables
f06_Inline_xv_18.jpg image under the symmetry x ↦ −x of the variable
f06_Inline_xv_19.jpg image under separation of variables
τxf translation by x ∈ ℝd
Rnf global regularization
fμ function weighted by μ
fρn local regularization
f * μ convolution with μ
f ⨂ g tensor product with g
fT composition with T
support
Lf or L ∘ f composition with the linear mapping L

      DERIVATIVES OF A FUNCTION f

fʹ or df/dx derivative of a function of a single real variable
∂if partial derivative: ∂if = ∂f/∂xi
∂β f derivative of order f06_Inline_xvi_1.jpg
β positive multi-integer: β = (β1,…, βd), βi ≥ 0
|β| differentiability order: |β| = |β11 + … |βd|
∂0f derivative of order 0: ∂0 f = f
f gradient: ∇f = (∂1f,…, ∂df)
df differential
q field: q = (q1,…,qd)
∇· q divergence: ∇ · q = 1q1 + … ∂dqd
−1q primitive that depends continuously on q
q* explicit primitive: q*(x) = fΓ(a, x) q · dℓ

      INTEGRALS AND PATHS

f06_Inline_xvi_2.jpg Cauchy integral
f06_Inline_xvi_3.jpg approximate integral
f06_Inline_xvi_4.jpg surface integral over a sphere
ƒΓq·dℓ line integral of a vector field along a path
Γ path
[Γ] image of a path: [Γ] = {Γ(t) : titte}
f06_Inline_xvi_5.jpg reverse path
Γ{a} path consisting of a single point
f06_Inline_xvi_6.jpg rectilinear path
f06_Inline_xvi_7.jpg path concatenation
T tube around a path: T = [Γ] + B
H homotopy
[H] image of a homotopy
Скачать книгу
Librs.Net