Geochemistry. William M. White

Geochemistry - William M. White


Скачать книгу
or as complex as the electromagnetic spectrum of a star. Of course, it is possible to measure both the dip of rock strata and a stellar spectrum incorrectly. Before an observation becomes part of the body of scientific knowledge, we would like some reassurance that it is right. How can we tell whether observations are right or not? The most important way to verify an observation is to replicate it independently. In the strictest sense, independent means by a separate observer, team of observers, or laboratory, and preferably by a different technique or instrument. It is not practicable to replicate every observation in this manner, but critical observations, those which appear to be inconsistent with existing theories or which test the predictions of newly established ones should be, and generally are, replicated. But even replication does not guarantee that an observation is correct.

      Occasionally, new observations are so inconsistent with a well-established theory that it must be discarded entirely and a new one developed to replace it. Scientific “revolutions” occur when major theories are discarded in this manner. Rapid progress in understanding generally accompanies these revolutions. Such was the case in physics in the early twentieth century when the quantum and relativity theories supplanted Newtonian theories (Lindley, 2001). The development of plate tectonics in the 1960s and 1970s is an excellent example of a scientific revolution in which old theories were replaced by a new unifying one. A range of observations including the direction of motion along transform faults, the magnetic anomaly pattern on the sea floor, and the distribution of earthquakes and volcanoes were either not predicted by, or were inconsistent with, classical theories of the Earth. Plate tectonics explained all these and made a number of predictions, such as the age of the sea floor, that could be tested. Thus scientific understanding progresses through an endless cycle of observation, theory construction and modification, and prediction.

      In this cycle, theories can achieve acceptance, but can never be proven correct, because we can never be sure that it will not fail some new, future test.

      1.4.2 The scientist as skeptic

      Although we often refer to scientific facts, there are no facts in science. A fact, by definition, cannot be wrong. Both observations and theories can be, and sometimes are, wrong. Of course, some observations (e.g., the Sun rises each morning in the East) and theories (the Earth revolves around the Sun) are so oft-repeated and so well established that they are not seriously questioned. But remember that the theory that the Sun revolves around the Earth was itself once so well established that Galileo was tried and sentenced to house arrest for questioning it.

      1.5.1 The periodic table

      Mendeleyev's periodic table of the elements was the sort of discovery that produces revolutions in science. Chemistry had evolved tremendously through the first half of the nineteenth century. Between the publication of Lavoisier's The Elements of Chemistry, often considered the first modern text in chemistry, in 1789 and Mendeleyev's 1869 paper, the number of known elements had increased from 23 to 67. The concepts of the atom and the molecule were well established, and the role of electromagnetic forces in chemical interactions was at least partly understood. Nevertheless, the structure of atoms, and how this structure governed chemical properties of the atom, were to be twentieth-century discoveries (though there were some interesting prescient theories). Mendeleyev's great contribution was to show that properties of the elements are a periodic function of atomic weights. Like all good scientific theories, this one made predictions: Mendeleyev was not only able to predict the discovery of then-unknown elements, such as B, Sc, Ga, and Ge, but also their characteristics and the materials or minerals in which they were most likely to be found (Strathern, 2000). The periodic table led the way not only to the discovery of the remaining elements, but also to understanding the fundamental controls on chemical behavior.

      Figure 1.1 shows the periodic table as we know it today. Like most theories, Mendeleyev's has gone through some revision since it was first proposed. Most importantly, we now organize the periodic table based on atomic number rather than atomic weight. The atomic number of an element is its most important property and is determined by the number of protons in the nucleus (thus the terms atomic number


Скачать книгу