Physikalische Chemie. Peter W. Atkins

Physikalische Chemie - Peter W. Atkins


Скачать книгу
–0.50

      Übung 2-4

      Bei sehr niedrigen Temperaturen ist die Wärmekapazität von Feststoffen proportional zu T3, also Cp = aT3 (a ist ein konstanter Faktor). Wie groß ist unter diesen Bedingungen die Enthalpieänderung eines Stoffs beim Erwärmen von 0 K auf die Temperatur T (mit T ≈ 0 K)? images

      Die meisten Substanzen dehnen sich aus, wenn sie bei konstantem Druck erwärmt werden. Dabei verrichten sie Arbeit an der Umgebung und geben einen Teil der als Wärme zugeführten Energie wieder nach außen ab. Ihre Temperatur nimmt auf diese Weise weniger zu, als wenn das Volumen des Systems während der Erwärmung konstant gehalten würde. Ein geringerer Temperaturanstieg bedeutet eine größere Wärmekapazität; wir können daraus also schließen, dass in den meisten Fällen die Wärmekapazität eines Stoffs bei konstantem Druck größer ist als die Wärmekapazität bei konstantem Volumen. Für ideale Gase gilt, wie wir in Abschnitt 2.3.2 herleiten werden, die einfache Beziehung

      Daraus folgt, dass die molare Wärmekapazität eines idealen Gases bei konstantem Druck um etwa 8 J K–1 mol–1 größer ist als bei konstantem Volumen. Wenn wir bedenken, dass die molare Wärmekapazität eines einatomigen Gases bei konstantem Volumen etwa 12 J K–1 mol–1 beträgt, wird klar, dass diese Differenz keinesfalls vernachlässigt werden kann.

      Mit einem dynamischen Differenzialkalorimeter (DSC) misst man, wie viel Energie in Form von Wärme ein System während einer physikalischen Zustandsänderung oder chemischen Reaktion mit seiner Umgebung austauscht. Der Vorsatz „Differenzial-“ bezieht sich darauf, dass der Zustand der Probe während der Analyse ständig mit dem Zustand eines Referenzmaterials verglichen wird, das sich weder chemisch noch physikalisch verändert. „Dynamisch“ ist das Verfahren, weil die Temperatur von Probe und Referenzmaterial dabei schrittweise erhöht wird.

image

      Findet bei der Temperatur T keine chemische oder physikalische Veränderung der Probe statt, so ist die auf die Probe übertragene Wärme qp = CpΔT. Hierist ΔT = TT0 und Cp soll nicht von der Temperatur abhängen. Wegen T = T0 + αt ist ΔT = αt. Während des chemischen oder physikalischen Prozesses wird die Energie qp + qp,ex übertragen; q p,ex entspricht dabei der Energie, die zusätzlich aufgewendet werden muss, um die Temperaturen von Probe und Referenz anzugleichen. Wir interpretieren q p,ex als scheinbare Änderung der Wärmekapazität der Probe bei konstantem Druck, Cp, während der Abtastung des Temperaturbereichs,

image

      wobei Pex = qp, ex/t die elektrische Leistung ist, die zusätzlich aufzuwenden ist, um Proben- und Referenztemperatur in Übereinstimmung zu bringen.

image

      wobei T1 und T2 die Anfangs- bzw. Endtemperatur der Messung sind. Wie wir dieser Beziehung entnehmen können, entspricht die Enthalpieänderung der Fläche unter dem Kurve von Cp, ex als Funktion von T.

image

      Mit einem DSC-System kann man auch Enthalpieänderungen sehr kleiner Proben (bis zu 0.5 mg) ermitteln. Dies ist ein deutlicher Vorteil gegenüber Bomben- und Verbrennungskalorimetern, die Probenmengen von mindestens einigen Gramm erfordern. In der chemischen Industrie wird diese Methode eingesetzt, um Polymere hinsichtlich ihrer Struktur, Stabilität oder ihrer molekularen Anordnung zu charakterisieren. Beispielsweise kann man damit untersuchen, wie sich Copolymere z. B. aus Ethylenoxid (EO) und Propylenoxid (PO) bei einer Temperaturerhöhung spontan zu Aggregaten zusammenlagern. Derartige Copolymere werden vielfach als oberflächenaktive Substanzen und Detergenzien eingesetzt, da die zentralen hydrophoben PO-Blöcke zusammen mit den endständigen hydrophileren EO-Blöcken einen amphiphilen (d. h. sowohl wasser- als auch kohlenwasserstofffreundlichen) Charakter des Copolymers bewirken. Bei einer Temperaturerhöhung lagern sich die Moleküle zu Mizellen zusammen, da die zentralen hydrophoben PO-Segmente bei höherer Temperatur noch schlechter wasserlöslicher werden, die terminalen EO-Segmente aber ihre gute Solvatisierbarkeit in Wasser behalten. Die so bewirkte verstärkte Amphiphilie sorgt dafür, dass die Moleküle kugelförmige Mizellen bilden. Dieser Prozess ist stark endotherm, weil die anfänglich vorhandenen Wasserstoffbrückenbindungen der EO-Segmente gebrochen werden müssen; er lässt sich deshalb leicht durch DSC nachweisen. Eine weitere Temperaturerhöhung verändert die Form der Mizellen von kugel- zu stabförmig. Auch dieser Prozess zeigt sich in Form eines zweiten, schwächeren DSC-Signals, das eine kleine Enthalpieänderung anzeigt. Die deutliche Abnahme der Wärmekapazität im Zuge des Kugel-Stab-Übergangs hängt vermutlich mit einer starken Abnahme der Hydratisierung des Polymers zusammen.

      Auch die Stabilität von Proteinen, Nukleinsäuren und Membranen kann mithilfe der DSC untersucht werden. Dem in Abb. 2-16 gezeigten Thermogramm kann man entnehmen, dass das Protein Ubiquitin eine endotherme Konformationsänderung


Скачать книгу