The Big R-Book. Philippe J. S. De Brouwer

The Big R-Book - Philippe J. S. De Brouwer


Скачать книгу
8.2: Summary information based on the dataset mtcars.

brand avgDSP avgCYL minMPG medMPG avgMPG maxMPG
Fiat 78.9 4.0 27.3 29.85 29.85 32.4
Horn 309.0 7.0 18.7 20.05 20.05 21.4
Mazd 160.0 6.0 21.0 21.00 21.00 21.0
Merc 207.2 6.3 15.2 17.80 19.01 24.4
Toyo 95.6 4.0 21.5 27.70 27.70 33.9

      ## <chr> <int> ## 1 Fiat 2 ## 2 Horn 2 ## 3 Mazd 2 ## 4 Merc 7 ## 5 Toyo 2 grouped_cars <- t %>% # start with cars filter(brand %in% top_brands$brand) %>% # only top-brands group_by(brand) %>% summarise( avgDSP = round(mean(disp), 1), avgCYL = round(mean(cyl), 1), minMPG = min(mpg), medMPG = median(mpg), avgMPG = round(mean(mpg),2), maxMPG = max(mpg), ) print(grouped_cars) ## # A tibble: 5 x 7 ## brand avgDSP avgCYL minMPG medMPGavgMPGmaxMPG ## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 Fiat 78.8 4 27.3 29.8 29.8 32.4 ## 2 Horn 309 7 18.7 20.0 20.0 21.4 ## 3 Mazd 160 6 21 21 21 21 ## 4 Merc 207. 6.3 15.2 17.8 19.0 24.4 ## 5 Toyo 95.6 4 21.5 27.7 27.7 33.9

       summarise()

      # Each call to summarise() removes a layer of grouping: by_vs_am <- mtcars %>% group_by(vs, am) by_vs <- by_vs_am %>% summarise(n = n()) by_vs ## # A tibble: 4 x 3 ## # Groups: vs [2] ## vs am n ## <dbl> <dbl> <int> ## 1 0 0 12 ## 2 0 1 6 ## 3 1 0 7 ## 4 1 1 7 by_vs %>% summarise(n = sum(n)) ## # A tibble: 2 x 2 ## vs n ## <dbl> <int> ## 1 0 18 ## 2 1 14 # To removing grouping, use ungroup: by_vs %>% ungroup() %>% summarise(n = sum(n)) ## # A tibble: 1 x 1 ## n ## <int> ## 1 32 # You can group by expressions: this is just short-hand for # a mutate/rename followed by a simple group_by: mtcars %>% group_by(vsam = vs + am) ## # A tibble: 32 x 12 ## # Groups: vsam [3] ## mpg cyl disp hp drat wt qsec vs am ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1 21 6 160 110 3.9 2.62 16.5 0 1 ## 2 21 6 160 110 3.9 2.88 17.0 0 1 ## 3 22.8 4 108 93 3.85 2.32 18.6 1 1 ## 4 21.4 6 258 110 3.08 3.22 19.4 1 0 ## 5 18.7 8 360 175 3.15 3.44 17.0 0 0 ## 6 18.1 6 225 105 2.76 3.46 20.2 1 0 ## 7 14.3 8 360 245 3.21 3.57 15.8 0 0 ## 8 24.4 4 147. 62 3.69 3.19 20 1 0 ## 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 ## 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 ## # … with 22 more rows, and 3 more variables: ## # gear <dbl>, carb <dbl>, vsam <dbl> # By default, group_by overrides existing grouping: mtcars %>% group_by(cyl) %>% group_by(vs, am) %>% group_vars() ## [1] “vs” “am” # Use add = TRUE to append grouping levels: mtcars %>% group_by(cyl) %>% group_by(vs, am, add = TRUE) %>% group_vars() ## [1] “cyl” “vs” “am”

      1 1 More information about the concept “dispatcher function” is in Chapter 6 “The Implementation of OO” on page 87.

      2 2 In the sections Chapter 32 “R Markdown” on page 699 and Chapter 33 “knitr and LATEX” on page 703 it will be explained how these results from R can directly be used in reports without the need to copy and paste things.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SC2UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAOUAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABJbWcgAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAEAAAAAAA9wcmludFBy b29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAAAAAAAApwcm9vZlNldHVwAAAA AQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZDTVlLADhCSU0EOwAAAAACLQAA ABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABDcHRuYm9vbAAAAAAAQ2xicmJv b2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jvb2wAAAAAAExibHNib29sAAAA AABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAAAABCY2tnT2JqYwAAAAEAAAAA A
Скачать книгу