Repairable Systems Reliability Analysis. Rajiv Nandan Rai
1 Introduction to Repairable Systems
1.1 Introduction
A system is a collection of mutually related items, assembled to perform one or more intended functions. Any system majorly consists of (i) items as the operating parts, (ii) attributes as the properties of items, and (iii) the link between items and attributes as interrelationships. A system is not only expected to perform its specified function(s) under its operating conditions and constraints but also expected to meet specified requirements, referred as performance and attributes. The system exhibits certain behavioural pattern that can never ever be exhibited by any of its constituent items or their subsets. The items of a system may themselves be systems, and every system may be part of a larger system in a hierarchy. Each system has a purpose for which items, attributes, and relationships have been organized. Everything else that remains outside the boundaries of system is considered as environment from where a system receives input (in the form of material, energy, and/or information) and makes output to the environment which might be in different form as that of the input it had received. Internally, the items communicate through input and output wherein output(s) of one items(s) becomes the input(s) to others. The inherent ability of an item/system to perform required function(s) with specified performance and attributes when it is utilized as specified is known as functionability [1]. This definition differentiates between the terms functionality and functionability where former is purely related to the function performed whereas latter also takes into considerations the level of performance achieved.
Despite the system is functionable at the beginning of its operational life, we are fully aware that even after using the perfect design, best technology available for its production or the materials from which it is made, certain irreversible changes are bound to occur due to the actions of various interacting and superimposing processes, such as corrosion, deformations, distortions, overheating, fatigue, or similar. These interacting processes are the main reason behind the change in the output characteristics of the system. The deviation of these characteristics from the specifications constitutes a failure. The failure of a system, therefore, can be defined as an event whose occurrence results in either loss of ability to perform required function(s) or loss of ability to satisfy the specified requirements (i.e., performance and/or attributes). Regardless of the reason of occurrence of this change, a failure causes system to transit from a state of functioning to a state of failure or state of unacceptable performance. For many systems, a transition to the unsatisfactory or failure state means retirement. Engineering systems of this type are known as non-maintained or non-reparable system because it is impossible to restore their functionability within reasonable time, means, and resources. For example, a missile is a non-repairable system once launched. Other examples of non-repairable systems include