Nanobiotechnology in Diagnosis, Drug Delivery and Treatment. Группа авторов
Vicent, M.J. (2009). Combination therapy: opportunities and challenges for polymer‐drug conjugates as anticancer nanomedicines. Advanced Drug Delivery Reviews 61: 1203–1213.
34 Greish, K. (2007). Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. Journal of Drug Targeting 15: 457–464.
35 Gryparis, E.C., Hatziapostolou, M., Papadimitriou, E., and Avgoustakis, K. (2007). Anticancer activity of cisplatin‐loaded PLGA‐mPEG nanoparticles on LNCaP prostate cancer cells. European Journal of Pharmaceutics and Biopharmaceutics 67: 1–8.
36 Gulbake, A., Jain, A., Jain, A. et al. (2016). Insight to drug delivery aspects for colorectal cancer. World Journal of Gastroenterology 22: 582–599.
37 He, H., Lu, Y., Qia, J. et al. (2019). Adapting liposomes for oral drug delivery. Acta Pharmaceutica Sinica B 9: 36–48.
38 Hoet, P., Bruske‐Hohlfeld, I., and Salata, O. (2004). Nanoparticles‐known and unknown health risks. Journal of Nanobiotechnology 2: 1–15.
39 Hong, R.L., Huang, C.J., Tseng, Y.L. et al. (1999). Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C‐26 tumor‐bearing mice: is surface coating with polyethylene glycol beneficial? Clinical Cancer Research 5: 3645–3652.
40 Howard, M.D., Jay, M., Dziubla, T.D., and Lu, X. (2008). PEGylation of nanocarrier drug delivery systems: state of the art. Journal of Biomedical Nanotechnology 4: 133–148.
41 Huynh, N.T., Passirani, C., Saulnier, P., and Benoit, J.P. (2009). Lipid nanocapsules: a new platform for nanomedicine. International Journal of Pharmaceutics 379: 201–209.
42 Jeevanandam, J., Barhoum, A., Chan, J.S. et al. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology 9: 1050–1074.
43 Jha, A.K., Goenka, M.K., Nijhawan, S. et al. (2012). Nanotechnology in gastrointestinal endoscopy: a primer. Journal of Digestive Endoscopy 3: S77–S80.
44 Kaasgaard, T., Mouritsen, O.G., and Jørgensen, K. (2001). Screening effect of PEG on avidin binding to liposome surface receptors. International Journal of Pharmaceutics 214: 63–65.
45 Keum, N. and Giovannucci, E. (2019). Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nature Reviews Gastroenterology & Hepatology https://doi.org/10.1038/s41575‐019‐0189‐8.
46 Kong, S.H., Noh, Y.W., Suh, Y.S. et al. (2015). Evaluation of the novel near‐infrared fluorescence tracers pullulan polymer nanogel and indocyanine green/gamma‐glutamic acid complex for sentinel lymph node navigation surgery in large animal models. Gastric Cancer 18: 55–64.
47 Kovacevic, A., Savic, S., Vuleta, G. et al. (2011). Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. International Journal of Pharmaceutics 406: 163–172.
48 Kumar, P.S., Datta, M.S., Kumar, D.M. et al. (2016). Potential application of dendrimers in drug delivery: a concise review and update. Journal of Drug Delivery and Therapeutics 6: 71–88.
49 Lacy, B.E., Mearin, F., Chang, L. et al. (2016). Bowel disorders. Gastroenterology 150: 1393–1407.
50 Laroui, H., Wilson, D.S., Dalmasso, G. et al. (2011). Nanomedicine in GI. American Journal of Physiology ‐ Gastrointestinal and Liver Physiology 300: G371–G383.
51 Laroui, H., Rakhya, P., Xiao, B. et al. (2013). Nanotechnology in diagnostics and therapeutics for gastrointestinal disorders. Digestive and Liver Disease 45: 995–1002.
52 Lee, L.J. (2006). Polymer nano‐engineering for biomedical applications. Annals of Biomedical Engineering 34: 75–88.
53 Lopes, D., Nunes, C., Martins, M.C. et al. (2014). Eradication of Helicobacter pylori: past, present and future. Journal of Controlled Release 189: 169–186.
54 Lopes, D., Nunes, C., Martins, M.C.L. et al. (2015). Targeting strategies for the treatment of Helicobacter pylori infections. In: Nano Based Drug Delivery (ed. J. Naik), 339–366. Zagreb, Croatia: IAPC Publishing.
55 Lopes‐de‐Campos, D., Pinto, R.M., Lima, S.A. et al. (2019). Delivering amoxicillin at the infection site – a rational design through lipid nanoparticles. International Journal of Nanomedicine 14: 2781–2795.
56 Lovrić, J., Bazzi, H.S., Cuie, Y. et al. (2005). Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. Journal of Molecular Medicine 83: 377–385.
57 Lyberopoulou, A., Efstathopoulos, E.P., and Gazouli, M. (2016). Nanotechnology‐based rapid diagnostic tests. In: Proof and Concepts in Rapid Diagnostic Tests and Technologies (ed. K.S. Saxena), 89–105. London: IntechOpen.
58 Maeda, H., Wu, J., Sawa, T. et al. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release 65: 271–284.
59 Martinez‐Carmona, M., Gunko, Y.K., and Vallet‐Regi, M. (2018). Mesoporous silica materials as drug delivery: the nightmare of bacterial infection. Pharmaceutics 10 (279): 1–29.
60 Matea, C.T., Mocan, T., Tabaran, F. et al. (2017). Quantum dots in imaging, drug delivery and sensor applications. International Journal of Nanomedicine 12: 5421–5431.
61 Medina, C., Santos‐Martinez, M.J., Radomski, A. et al. (2007). Nanoparticles: pharmacological and toxicological significance. British Journal of Pharmacology 150: 552–558.
62 Mintzer, M.A., Dane, E.L., O'Toole, G.A., and Grinstaff, M.W. (2012). Exploiting dendrimer multivalency to combat emerging and re‐emerging infectious diseases. Molecular Pharmaceutics 9: 342–354.
63 Mishra, S., Webster, P., and Davis, M.E. (2004). PEGylation significantly affects cellular uptake and intracellular trafficking of non‐viral gene delivery particles. European Journal of Cell Biology 83: 97–111.
64 Owens, D.E. and Peppas, N.A. (2006). Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics 307: 93–102.
65 Peters, R., Kramer, E., Oomen, A.G. et al. (2012). Presence of nano‐sized silica during in vitro digestion of foods containing silica as a food additive. ACS Nano 6: 2441–2451.
66 Podolsky, D.K. (2002). Inflammatory bowel disease. The New England Journal of Medicine 347: 417–429.
67 Powers, K.W., Palazuelos, M., Moudgil, B.M., and Roberts, S.M. (2007). Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1: 42–51.
68 Riasat, R., Guangjun, N., Riasat, N. et al. (2016). Effects of nanoparticles on gastrointestinal disorders and therapy. Journal of Clinical Toxicology 6 (313): 1–10.
69 Romberg, B., Hennink, W.E., and Storm, G. (2008). Sheddable coatings for long‐circulating nanoparticles. Pharmaceutical Research 25: 55–71.
70 Seabra, C.L., Nunes, C., and Gomez‐Lazaro, M. (2017). Docosahexaenoic acid loaded lipid nanoparticles with bactericidal activity against Helicobacter pylori. International Journal of Pharmaceutics 519: 128–137.
71 Senanayake, T.H., Warren, G., Wei, X., and Vinogradov, S.V. (2013). Application of activated nucleoside analogs for the treatment of drug‐resistant tumors by oral delivery of nanogel‐drug conjugates. Journal of Controlled Release 167: 200–209.
72 Seydack, M. (2004). Nanoparticle labels in immunosensing using optical detection methods. Biosensors and Bioelectronics 20: 2454–2469.
73 Stang, J., Haynes, M., Carson, P., and Moghaddam, M. (2012). A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Transactions on Biomedical Engineering 59: 2431–2438.
74 Szentkuti, L. (1997). Light microscopical observations on luminally administered dyes, dextrans, nanospheres and microspheres in the pre‐epithelial mucus gel layer of the rat distal colon. Journal of Controlled Release