Искусство статистики. Как находить ответы в данных. Дэвид Шпигельхалтер
политики, однако они могут вводить в заблуждение, причем не только потому, что различия бывают вызваны случайными отклонениями, но и потому, что больницы принимают пациентов с заболеваниями разной степени тяжести. Например, по данным табл. 1.1 можно заподозрить, что больница в Бирмингеме – одна из крупнейших и наиболее известных детских больниц – берет наиболее тяжелые случаи. Поэтому было бы несправедливо говорить, что у нее не самые впечатляющие показатели выживаемости[27].
Показатели выживаемости можно представить и в виде горизонтальной столбчатой диаграммы, как на рис. 1.1. Главное – решить, где начинать горизонтальную ось: если с 0 %, то полосы займут практически всю ширину диаграммы, что покажет необычайно высокий уровень выживаемости во всех больницах, но полосы между собой будет трудно различить. Гораздо хуже старый трюк, использующийся для обмана, – начать, например, с 95 %. Тогда все больницы будут резко отличаться, даже если на самом деле разница в показателях объясняется чистой случайностью.
Рис. 1.1
Горизонтальная гистограмма уровня выживаемости за 30 дней в тринадцати больницах. Выбор начала горизонтальной оси (в данном случае 86 %) может существенно сказаться на впечатлении, вызываемом графиком. Если ось начинается с 0 %, все больницы выглядят неразличимыми; если же начать с 95 %, разница будет обманчиво драматичной
Следовательно, выбор начала оси представляет собой дилемму. Альберто Каиро, автор авторитетных книг по визуализации данных[28], предлагает всегда начинать с «логической и взвешенной точки отсчета», которую в нашем случае трудно определить. Мой собственный произвольный выбор – 86 %, что примерно отражает недопустимо низкий уровень выживаемости в Бристольской больнице двадцатью годами ранее.
Я начал книгу цитатой Нейта Сильвера, основателя цифровой платформы FiveThirtyEight и автора точного прогноза президентских выборов 2008 года в США. Он красноречиво высказал идею, что цифры не говорят сами за себя – это мы наполняем их смыслом. А значит, коммуникации – ключевая часть цикла решения проблем, и в этом разделе я показал, как способ представления данных может влиять на наше восприятие.
Теперь нам нужно ввести важное и удобное понятие, которое поможет выйти за рамки простых вопросов типа «да/нет».
Качественные переменные
Переменной называется любая величина, которая может принимать различные значения в разных обстоятельствах; это очень полезный сокращенный термин для всех видов наблюдений, содержащих данные. Бинарные переменные могут принимать только два значения (да/нет) – например, жив человек или мертв, женщина он или мужчина. Значения могут отличаться у разных людей и даже у одного человека в разные моменты жизни. Качественная (или категорийная) переменная – это переменная, которая может принимать одно, два или более значений, попадающих в ту
28
См. A. Cairo, The Truthful Art: Data, Charts, and Maps for Communication (New Riders, 2016), и The Functional Art: An Introduction to Information Graphics and Visualization (New Riders, 2012).