Linear and Convex Optimization. Michael H. Veatch
rel="nofollow" href="#fb3_img_img_9da282e6-f91e-5ca0-8fb2-235bb38acdd5.png" alt="images"/> if false (decide not to take the action). A variable whose possible values are
General Form of an Integer Program
1.4.3 Nonlinear Programs
An optimization problem where the objective function and constraints may be nonlinear is called a nonlinear program. The variables are assumed to be continuous, as in a linear program. Thus, nonlinear programs are more general than linear programs, but do not include integer programs. While linear programs can be described in matrix notation, nonlinear programs are described in terms of functions.
General Form of a Nonlinear Program
We have not stated the nonnegativity constraints separately. However, a nonnegativity constraint can be included in the functional constraints if needed.
The ability to solve a nonlinear program depends on the type of objective function
Problems
For Exercises 1–6, solve the linear program graphically.
For Exercises 6–8, solve the integer program graphically.
1
2
3
4 a) Solve as stated. b) Change “min” to “max” and solve.
5
6
7
8
9 For the linear program (1.1)Suppose the objective is to minimize the cost of aid given in 1.2. What is the optimal solution? Explain why minimizing cost is not a reasonable objective for this problem.Find an objective function for which , is optimal. Show graphically that this point is optimal.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.