Nanopharmaceutical Advanced Delivery Systems. Группа авторов

Nanopharmaceutical Advanced Delivery Systems - Группа авторов


Скачать книгу
poorly water-soluble drugs. Sci. Pharm., 79, 705–727, 2011.

      45. Tamjidi, F., Shahedi, M., Varshosaz, J., Nasirpour, A., Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. Technol., 19, 29–43, 2013.

      46. Chime, S., Kenechukwu, F., Attama, A., Nanoemulsions-advances in formulation, characterization and applications in drug delivery, in: Application of Nanotechnology in Drug Delivery, A.D. Sezer (Ed.), pp. 77–11, IntechOpen Limited, London, 2014.

      47. Jaiswal., M., Dudhe, R., Sharma, P., Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech, 5, 123–127, 2015.

      48. Thiagarajan, P., Nanoemulsion for drug delivery through different routes. Res. Biotechnol., 2, 1–13, 2011.

      49. Lovelyn, C. and Attama, A.A., Current State of Nanoemulsions in Drug Delivery. J. Biomater. Nanobiotechnol., 2, 626–639, 2011.

      50. Pande, S.V. and Biyani, K.R., Microencapsulation by solvent evaporation method of BCS Class 4 drugs for bioavailability enhancement. J. Drug Deliv. Ther., 6, 18–30, 2016.

      51. Mundhe, A.V., Fuloria, N.K., Biyani, K.R., Cocrystallization: an alternative approach for solid modification. J. Drug Deliv. Ther., 3, 166–172, 2013.

      52. Shelke, P.V., Dumbare, A.S., Gadhave, M.V., Jadhav, S.L., Sonawane, A.A., Gaikwad, D.D., Formulation and evaluation of rapidly dis integrating film of amlodipine besylate. J. Drug Deliv. Ther., 2, 72–75, 2012.

      53. Maurya, S.D., Arya, R.K.K., Rajpal, G., Dhakar, R.C., Self-micro emulsifying drug delivery systems (SMEDDs): A review on physico-chemical and biopharmaceutical aspects. J. Drug Deliv. Ther., 7, 55–65, 2017.

      54. Agrawal, S., Giri, T.K., Tripathi, D.K., Ajazuddin, Alexander, A., A review on noval therapeutic strategies for the enhancement of solubility for hydrophobic drugs through lipid based Self Micro Emulsifying Drug Delivery System: A Novel Approach. Am. J. Drug Discov., 2, 143–183, 2012.

      55. Gursoy, R.N. and Benita, S., Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother., 58, 173–182, 2004.

      56. Wu, W., Wang, Y., Que, L., Enhanced bioavailability of silymarin by self-micro emulsifying drug delivery system. Eur. J. Pharm. Biopharm., 63, 288–294, 2006.

      57. Kang, B.K., Lee, J.S., Chon, S.K., Jeong, S.Y., Yuk, S.H., Khang, G. et al., Development of self-micro emulsifying drug delivery systems (SMEDDs) for oral bioavailability enhancement of simvastatin in beagle dogs. Int. J. Pharm., 274, 65–73, 2004.

      58. Ishiwa, J., Sato, T., Mimaki, Y., Sashida, Y., Yano, M., Ito, A., A citrus flavonoid, nobiletin, suppresses production and gene expression of matrixmetalloproteinase 9/gelatinase B in rabbit synovial fibroblasts. J. Rheumatol., 27, 20–25, 2000.

      59. Lin, N., Sato, T., Takayama, Y., Mimaki, Y., Sashida, Y., Yano, M. et al., Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem. Pharmacol., 65, 2065–2071, 2003.

      60. Gursoy, R.N. and Benita, S., Self-emulsifying drug delivery systems (SMEDDs) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother., 58, 173–182, 2004.

      61. Constantinides, P.P., Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm. Res., 12, 1561–1572, 1995.

      63. Pouton, C.W., Self-emulsifying drug delivery systems: assessment of the efficiency of emulsification. Int. J. Pharm., 27, 335–348, 1985.

      64. Wakerly, M.G., Pouton, C.W., Meakin, B.J., Evaluation of the self-emulsifying performance of a non-ionic surfactant-vegetable oil mixture. J. Pharm. Pharmacol., 39, 6, 1987.

      65. Charman, S.A., Charman, W.N., Rogge, M.C., Wilson, T.D., Dutko, F.J., Pouton, C.W., Self-emulsifying drug delivery systems: formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm. Res., 9, 87–93, 1992.

      66. Cherniakov, I., Domb, A.J., Hoffman, A., Self-nano-emulsifying drug delivery systems: an update of the biopharmaceutical aspects. Expert Opin. Drug Deliv., 12, 1121–1133, 2015.

      67. Soni, G.C., Prajapati, S.K., Chaudhri., N., Self Nanoemulsion, Advance Form of Drug Delivery System. WJPPS, 3, 410–436, 2014.

      68. Rao, C.B., Vidyadhara, S., Sasidhar, R.L.C., Chowdary, Y.A., Design And Evaluation of Self-Nanoemulsified Drug Delivery System (SNEDDS) of Docetaxel by Optimizing the Particle Size using Response Surface Methodology. IAJPS, 1, 35–45, 2014.

      69. Radha, G.V., Sastri, K.T., Burada, S., Rajkumar, J., A systematic review on self-micro emulsifying drug delivery systems: A potential strategy for drugs with poor oral bioavailability. Int. J. App. Pharm., 11, 23–33, 2019.

      70. Shalaev, E., Wu, K., Shamblin, S., Krzyzaniak, J.F., Descamps, M., Crystalline mesophases: Structure, mobility, and pharmaceutical properties. Adv. Drug Deliv. Rev., 100, 194–211, 2016.

      71. Pikal, M.J., Lukes, A.L., Lang, J.E., Gaines, K., Quantitative crystallinity determinations for beta-lactam antibiotics by solution calorimetry: correlations with stability. J. Pharm. Sci., 67, 767–773, 1978.

      72. Lefort, R., Caron, V., Willart, J.F., Descamps, M., Mutarotational kinetics and glass transition of lactose. Solid State Commun., 140, 329–334, 2006.

      73. Dujardin, N., Dudognon, E., Willart, J.F., Hédoux, A., Guinet, Y., Paccou, L. et al., Solid state mutarotation of glucose. J. Phys. Chem., 115, 1698–1705, 2011.

      74. Mo, J., Milleret, G., Nagaraj, M., Liquid crystal nanoparticles for commercial drug delivery. Liq. Cryst. Rev., 5, 69–85, 2017.

      75. Johari, G.P., Kim, S., Shanker, R.M., Dielectric study of equimolar acetaminophenaspirin, acetaminophen-quinidine, and benzoic acid-progesterone molecular alloys in the glass and ultraviscous states and their relevance to solubility and stability. J. Pharm. Sci., 99, 1358–1374, 2010.

      76. Johari, G.P., Secondary relaxations and the properties of glasses and liquids, in: Molecular Dynamics and Relaxation Phenomena in Glasses, T. Dorfmüller and G. Williams (Eds.), pp. 90–112, Springer, Berlin Heidelberg, 1987.

      77. Esposito, E., Cortesi, R., Drechsler, M., Paccamiccio, L., Mariani, P., Contado, C. et al., Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm. Res., 22, 2163–2173, 2005.

      78. Li, J., Wu, L., Wu, W., Wang, B., Wang, Z., Xin, H. et al., A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate. Int. J. Pharm., 455, 75–84, 2013.

      79. Lippacher, A., Müller, R., Mäder, K., Investigation on the viscoelastic properties of lipid based colloidal drug carriers. Int. J. Pharm., 196, 227–230, 2000.

      80. Mehnert, W. and Mäder, K., Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev., 47, 165–196, 2001.

      81. Shah, R., Eldridge, D., Palombo, E., Harding, I., Lipid Nanoparticles: Production, Characterization and Stability, Springer International Publishing, USA, 2015.

      83. Svilenov, H. and Tzachev, C., Solid lipid nanoparticles–a promising drug delivery system,


Скачать книгу