The Panama Canal. Frederic J. Haskin

The Panama Canal - Frederic J. Haskin


Скачать книгу
this figure D and G are the big 18-foot culverts through which water is admitted from the lake to the locks. Each of these three big culverts, which are nearly 7,000 feet long, is large enough to accommodate a modern express train, and is about the size of the Pennsylvania tubes under the Hudson and East Rivers. H represents the culverts extending across the lock from the big ones. Each of them is big enough to accommodate a two-horse wagon, and there are 14 in each lock. Every alternate one leads from the side wall culvert and the others from the center wall culvert. F represents the wells that lead up through the floor into the lock, each larger in diameter than a sugar barrel in girth. There are five wells on each cross culvert, or 70 in the floor of each lock.

      The flow of the water into the locks and out again is controlled by great valves. The ones which control the great wall tunnels or culverts are called Stoney Gate valves, and operate something like giant windows in frames. They are mounted on roller bearings to make them work without friction. The others are ordinary cylindrical valves, but, having to close a culvert large enough to permit a two-horse team to be driven through it, they must be of great size. When a ship is passing from Gatun Lake down to the Atlantic Ocean, the water in the upper lock is brought up to the level of that in the lake, being admitted through the big wall culverts, whence it passes out through the 14 cross culverts and up into the locks through the 70 wells in the floor. Then the ship is towed in, the gates are shut behind it, the valves are closed against the water in the lake, the ones permitting the escape of this water into the lock below are opened, and it continues to flow out of the upper lock into the lower one until the water in the two has the same level. Then the gates between the two locks are opened, the ship is towed into the second one and the operation is repeated for the last lock in the same way.

      The gates of the locks are an interesting feature. Their total weight is about 58,000 tons. There are 46 of them, each having two leaves. Their weight varies from 300 to 600 tons per leaf, dependent upon the varying height of the different gates. The lowest ones are 47 feet high and the highest ones 82 feet, their height depending upon the place where they are used. Some of these are known as intermediate gates, and are used for short ships, when it is desired to economize on both water and time. They divide each lock chamber into two smaller chambers of 350 and 550 feet, respectively. Perhaps 90 per cent of all the ships that pass Panama will not need to use the full length lock—1,000 feet. Duplicate gates will always be kept on the ground as a precaution against accident. Each leaf is 65 feet wide and 7 feet thick. The heaviest single piece of steel in each one of them is the lower sill, weighing 18 tons. It requires 6,000,000 rivets to put them together. In the lower part of each gate is a huge tank. When it is desired that the gate shall have buoyancy, as when operating it, this tank will be filled with air. When closed it is filled with water. The gates are opened and closed by a huge arm, or strut, one end of which is connected to the gate and the other to a huge wheel in the manner of the connecting rod to the driver of a locomotive. Leakage through the space between the gate and the miter sill on the floor of the lock is prevented by a seal which consists of heavy timbers with flaps of rubber 4 inches wide and half an inch thick. A special sealing device brings the edges of the two leaves of a gate together and holds them firmly while the gates are closed.

      Remembering that these gates are nothing more than Brobdingnagian double doors which close in the shape of a flattened V, it follows that they must have hinges. And these hinges are worth going miles to see. That part which fastens to the wall of the lock weighs 36,752 pounds in the case of the operating gates, and 38,476 pounds in the protection gates. These latter are placed in pairs with the operating gates at all danger points—so that if one set of gates are rammed down, another pair will still be in position. The part of the hinge attached to the gate was made according to specifications which required that it should stand a strain of 40,000 pounds before stretching at all, and 70,000 pounds before breaking. Put into a huge testing machine, it actually stood a strain of 3,300,000 pounds before breaking—seven times as great as any stress it will ever be called upon to bear. The gates are all painted a lead gray, to match the ships of the American Navy. Those which come into contact with sea water will be treated with a barnacle-proof preparation.

      Now that we have described the locks, we may go back and see them in course of construction. The first task was getting the lock building plant designed and built. At Gatun the plant consisted of a series of immense cableways, an electric railroad, and enormous concrete mixers. Great towers were erected on either side of the area excavated for the locks, with giant cables connecting them. These towers were 85 feet high, and were mounted on tracks like steam shovels, so that they could be moved forward as the work progressed. The cables connecting them were of 212 lock steel wire covered with interlocking strands. They were guaranteed to carry 6 tons at a trip, 20 trips an hour, and to carry 60,000 loads before giving way. They actually did better than the specifications called for as far as endurance was concerned.

      The sand for making the concrete for Gatun came from Nombre de Dios (Spanish for Name of God), and the gravel from Porto Bello. The sand and gravel were towed in great barges, first through the old French Canal, and later through the Atlantic entrance of the present canal. Great clamshell buckets on the Lidgerwood cableways would swoop down upon the barges, get 2 cubic yards of material at a mouthful, lift it up to the cable, carry it across to the storage piles and there dump it. In this way more than 2,000,000 wagon loads of sand and gravel were handled.

      A special equipment was required to haul the sand, gravel, and cement from the storage piles to the concrete mixers. There were two circular railroads of 24-inch gauge, carrying little electric cars that ran without motormen. Each car was stopped, started, or reversed by a switch attached to the car. Their speed never varied more than 10 per cent whether they were going empty or loaded, up hill or down. When a car was going down hill its motor was reversed into a generator so that it helped make electricity to pull some other car up the hill. The cars ran into a little tunnel, where each was given its proper load of one part cement, three parts sand, and six parts gravel—2 cubic yards, in all—and was then hurried on to the big concrete mixers. These were so arranged in a series that it was not necessary to stop them to receive the sand, gravel, and cement, or to dump out the concrete.

      On the emptying sides of the concrete mixers there were other little electric railway tracks. Here there were little trains of a motor and two cars each, with a motorman. The train, with two big 2-cubic-yard buckets, drew up alongside two concrete mixers. Without stopping their endless revolutions the mixers tilted and poured out their contents into the two buckets, 2 yards in each. Then the little train hurried away, stopping under a great cable. Across from above the lock walls came two empty buckets, carried on pulleys on the cableway. When they reached a point over the train they descended and were set on the cars, behind the full buckets. The full buckets were then attached to the lifting hooks, and were carried up to the cable and then across to the lock walls, where they were dumped and the concrete spread out by a force of men. Meanwhile the train hustled off with its two empty buckets, ready to be loaded again.

      On the Pacific side the concrete handling plant was somewhat different. Instead of cableways there were great cantilever cranes built of structural steel. Some of these were in the shape of a giant T, while others looked like two T's fastened together. Here the clamshell dippers were run out on the arms of the cranes to the storage piles, where they picked up their loads of material. This was put in hoppers large enough to store material for 10 cubic yards. The sand and stone then passed through measuring hoppers and to the mixers with cement and water added. After it was mixed it was dumped into big buckets on little cars drawn by baby steam locomotives, which looked like overgrown toy engines. These little fellows reminded one of a lot of busy bees as they dashed about here and there with their loads of concrete, choo-chooing as majestically as the great dirt


Скачать книгу