A History of Aeronautics. Evelyn Charles Vivian
an impossibility, or at best such a useless show as Besnier was able to give.
The eighteenth century was almost barren of experiment. Emanuel Swedenborg, having invented a new religion, set about inventing a flying machine, and succeeded theoretically, publishing the result of his investigations as follows:—
'Let a car or boat or some like object be made of light material such as cork or bark, with a room within it for the operator. Secondly, in front as well as behind, or all round, set a widely-stretched sail parallel to the machine forming within a hollow or bend which could be reefed like the sails of a ship. Thirdly, place wings on the sides, to be worked up and down by a spiral spring, these wings also to be hollow below in order to increase the force and velocity, take in the air, and make the resistance as great as may be required. These, too, should be of light material and of sufficient size; they should be in the shape of birds' wings, or the sails of a windmill, or some such shape, and should be tilted obliquely upwards, and made so as to collapse on the upward stroke and expand on the downward. Fourth, place a balance or beam below, hanging down perpendicularly for some distance with a small weight attached to its end, pendent exactly in line with the centre of gravity; the longer this beam is, the lighter must it be, for it must have the same proportion as the well-known vectis or steel-yard. This would serve to restore the balance of the machine if it should lean over to any of the four sides. Fifthly, the wings would perhaps have greater force, so as to increase the resistance and make the flight easier, if a hood or shield were placed over them, as is the case with certain insects. Sixthly, when the sails are expanded so as to occupy a great surface and much air, with a balance keeping them horizontal, only a small force would be needed to move the machine back and forth in a circle, and up and down. And, after it has gained momentum to move slowly upwards, a slight movement and an even bearing would keep it balanced in the air and would determine its direction at will.'
The only point in this worthy of any note is the first device for maintaining stability automatically—Swedenborg certainly scored a point there. For the rest, his theory was but theory, incapable of being put to practice—he does not appear to have made any attempt at advance beyond the mere suggestion.
Some ten years before his time the state of knowledge with regard to flying in Europe was demonstrated by an order granted by the King of Portugal to Friar Lourenzo de Guzman, who claimed to have invented a flying machine capable of actual flight. The order stated that 'In order to encourage the suppliant to apply himself with zeal toward the improvement of the new machine, which is capable of producing the effects mentioned by him, I grant unto him the first vacant place in my College of Barcelos or Santarem, and the first professorship of mathematics in my University of Coimbra, with the annual pension of 600,000 reis during his life.—Lisbon, 17th of March, 1709.'
What happened to Guzman when the non-existence of the machine was discovered is one of the things that is well outside the province of aeronautics. He was charlatan pure and simple, as far as actual flight was concerned, though he had some ideas respecting the design of hot-air balloons, according to Tissandier. (La Navigation Aerienne.) His flying machine was to contain, among other devices, bellows to produce artificial wind when the real article failed, and also magnets in globes to draw the vessel in an upward direction and maintain its buoyancy. Some draughtsman, apparently gifted with as vivid imagination as Guzman himself, has given to the world an illustration of the hypothetical vessel; it bears some resemblance to Lana's aerial ship, from which fact one draws obvious conclusions.
A rather amusing claim to solving the problem of flight was made in the middle of the eighteenth century by one Grimaldi, a 'famous and unique Engineer' who, as a matter of actual fact, spent twenty years in missionary work in India, and employed the spare time that missionary work left him in bringing his invention to a workable state. The invention is described as a 'box which with the aid of clockwork rises in the air, and goes with such lightness and strong rapidity that it succeeds in flying a journey of seven leagues in an hour. It is made in the fashion of a bird; the wings from end to end are 25 feet in extent. The body is composed of cork, artistically joined together and well fastened with metal wire, covered with parchment and feathers. The wings are made of catgut and whalebone, and covered also with the same parchment and feathers, and each wing is folded in three seams. In the body of the machine are contained thirty wheels of unique work, with two brass globes and little chains which alternately wind up a counterpoise; with the aid of six brass vases, full of a certain quantity of quicksilver, which run in some pulleys, the machine is kept by the artist in due equilibrium and balance. By means, then, of the friction between a steel wheel adequately tempered and a very heavy and surprising piece of lodestone, the whole is kept in a regulated forward movement, given, however, a right state of the winds, since the machine cannot fly so much in totally calm weather as in stormy. This prodigious machine is directed and guided by a tail seven palmi long, which is attached to the knees and ankles of the inventor by leather straps; by stretching out his legs, either to the right or to the left, he moves the machine in whichever direction he pleases. … The machine's flight lasts only three hours, after which the wings gradually close themselves, when the inventor, perceiving this, goes down gently, so as to get on his own feet, and then winds up the clockwork and gets himself ready again upon the wings for the continuation of a new flight. He himself told us that if by chance one of the wheels came off or if one of the wings broke, it is certain he would inevitably fall rapidly to the ground, and, therefore, he does not rise more than the height of a tree or two, as also he only once put himself in the risk of crossing the sea, and that was from Calais to Dover, and the same morning he arrived in London.'
And yet there are still quite a number of people who persist in stating that Bleriot was the first man to fly across the Channel!
A study of the development of the helicopter principle was published in France in 1868, when the great French engineer Paucton produced his Theorie de la Vis d'Archimede. For some inexplicable reason, Paucton was not satisfied with the term 'helicopter,' but preferred to call it a 'pterophore,' a name which, so far as can be ascertained, has not been adopted by any other writer or investigator. Paucton stated that, since a man is capable of sufficient force to overcome the weight of his own body, it is only necessary to give him a machine which acts on the air 'with all the force of which it is capable and at its utmost speed,' and he will then be able to lift himself in the air, just as by the exertion of all his strength he is able to lift himself in water. 'It would seem,' says Paucton, 'that in the pterophore, attached vertically to a carriage, the whole built lightly and carefully assembled, he has found something that will give him this result in all perfection. In construction, one would be careful that the machine produced the least friction possible, and naturally it ought to produce little, as it would not be at all complicated. The new Daedalus, sitting comfortably in his carriage, would by means of a crank give to the pterophore a suitable circular (or revolving) speed. This single pterophore would lift him vertically, but in order to move horizontally he should be supplied with a tail in the shape of another pterophore. When he wished to stop for a little time, valves fixed firmly across the end of the space between the blades would automatically close the openings through which the air flows, and change the pterophore into an unbroken surface which would resist the flow of air and retard the fall of the machine to a considerable degree.'
The doctrine thus set forth might appear plausible, but it is based on the common misconception that all the force which might be put into the helicopter or 'pterophore' would be utilised for lifting or propelling the vehicle through the air, just as a propeller uses all its power to drive a ship through water. But, in applying such a propelling force to the air, most of the force is utilised in maintaining aerodynamic support—as a matter of fact, more force is needed to maintain this support than the muscle of man could possibly furnish to a lifting screw, and even if the helicopter were applied to a full-sized, engine-driven air vehicle, the rate of ascent would depend on the amount of surplus power that could be carried. For example, an upward lift of 1,000 pounds from a propeller 15 feet in diameter would demand an expenditure of 50 horse-power under the best possible conditions, and in order to lift this load vertically through such atmospheric pressure as exists at sea-level or thereabouts, an additional 20 horsepower would be required to attain a rate of 11 feet per second—50 horse-power must be continually provided for the mere support of the load, and the additional 20 horse-power must be continually provided in order to lift