Machine Learning für Softwareentwickler. Paolo Perrotta
aus Teil I zu einem richtiggehenden neuronalen Netz aus. Dazu müssen wir einige Probleme überwinden, aber die Mühe zahlt sich aus: Am Ende haben wir ein neuronales Netz, das weit leistungsfähiger ist als unser ursprüngliches Programm. Auch hier schreiben wir den Code wieder Zeile für Zeile selbst, sodass Sie selbst mit den internen Mechanismen experimentieren können.
In den letzten Jahren wurden bei neuronalen Netzen erhebliche Fortschritte erzielt, als Forscher bahnbrechende Techniken zu ihrer Konstruktion und Verwendung erfanden. Diese moderne Technologie ist weit leistungsfähiger als die früheren einfachen neuronalen Netze, weshalb sie auch einen eigenen Namen erhalten hat: Deep Learning. Das ist auch der Titel von Teil III. Darin schreiben wir unser neuronales Netz mithilfe einer modernen ML-Bibliothek um. Der resultierende Code dient uns dann als Ausgangspunkt zur weiteren Erörterung von Deep Learning. Am Ende schauen wir uns noch einige anspruchsvolle Deep-Learning-Techniken an, womit wir auch die Grundlagen für Ihre weitere Beschäftigung mit diesem Thema legen.
Die Wirklichkeit ist natürlich nicht so sauber geordnet, wie unser Bild anzudeuten scheint. Beispielsweise kommen neuronale Netze nicht nur beim überwachten Lernen, sondern auch auf anderen Gebieten des Machine Learning zum Einsatz. Allerdings bildet dieses Diagramm einen guten Ausgangspunkt, um ein Gefühl für die einzelnen Themen in diesem Buch und ihre Beziehungen zueinander zu gewinnen.
Bevor wir beginnen
Dieses Buch macht Sie nicht über Nacht zu einem Machine-Learning-Profi, aber es kann Ihnen ein anschauliches, praktisches Verständnis dafür vermitteln, wie Machine Learning funktioniert. Ich will Ihnen einen Blick hinter die Kulissen dieser Disziplin gewähren, Ihnen die verborgenen Mechanismen zeigen und den Schleier des Geheimnisvollen lüften. Wenn Sie erst einmal die Grundprinzipien des Machine Learning kennen, ist es für Sie einfacher, selbst weiter nachzuforschen, diese Techniken in Ihre Berufspraxis einfließen zu ließen und vielleicht sogar eine Karriere als ML-Ingenieur einzuschlagen.
Sie müssen kein erfahrener Entwickler sein, um dieses Buch verstehen zu können. Allerdings sollten Sie schon damit vertraut sein, kurze Programme zu schreiben. Wenn Sie Python kennen, dann umso besser, denn das ist die Sprache, die ich hier durchgängig verwende. Wenn nicht, ist das jedoch auch kein Beinbruch. Die Sprache ist sehr benutzerfreundlich, und der Code in diesem Buch ist nicht kompliziert. Zur Einführung können Sie Anhang A, »Grundlagen von Python«, lesen, und wenn Sie nicht mehr weiterwissen, finden Sie im Internet weitere Informationen.
Mit Machine Learning ist eine Menge Mathematik verbunden. Ich werde sie nicht vereinfachen, aber so anschaulich darstellen wie möglich. Für das Verständnis dieses Buchs brauchen Sie schon etwas Oberstufenmathematik. Ich gehe davon aus, dass Sie mit kartesischen Koordinatensystemen vertraut sind, wissen, was Achsen und ein Ursprung sind, und etwas mit einem Funktionsgraphen anfangen können. Darüber hinaus brauchen Sie nicht viel mathematisches Fachwissen. Sie können auch versuchen, das Buch zu lesen, wenn Sie glauben, ganz furchtbar schlecht in Mathe zu sein – aber bereiten Sie sich in diesem Fall schon einmal darauf vor, dass es vielleicht doch nicht möglich ist.
Wenn Sie sich dagegen mit linearer Algebra und Analysis gut auskennen, werden Ihnen einige der mathematischen Aspekte wahrscheinlich selbstverständlich erscheinen. In diesem Fall können Sie die Erklärungen, die Sie nicht brauchen, natürlich auch gern überspringen.
Mathematischer Hintergrund
Eine anschauliche Darstellung von mathematischen Dingen ist immer sehr hilfreich, aber manchmal sind auch formalere Erklärungen sinnvoll. Wenn Sie bei der einen oder anderen Formel den Faden verlieren oder wenn Ihnen Mathematik liegt und Sie gern mehr über ein Thema erfahren wollen, dann schauen Sie sich die Kästen mit dem Titel »Mathematischer Hintergrund« an. Darin weise ich Sie auf die Mathematiklektionen der hervorragenden Khan Academy1 hin. Dort werden Sie etwas Passendes für sich finden, wie gut oder schlecht Ihre Vorkenntnisse in Mathematik auch immer sein mögen.
Um es ganz klar zu sagen: Diese zusätzlichen Lektionen sind optional. Es ist nicht erforderlich, sie sich anzusehen, um dieses Buch verstehen zu können. Sie dienen lediglich dazu, Ihre Kenntnisse über die Mathematik des Machine Learning zu vertiefen.
Machine Learning bringt seine eigene umfangreiche und besondere Terminologie mit. Sie werden daher wahrscheinlich auf neue Wörter und auf neue Bedeutungen bekannter Wörter stoßen. Gehen Sie es ruhig an. Sie müssen sich nicht sofort alles merken. Im Zweifelsfall können Sie immer in Anhang B, »Wörterbuch des Machine Learning«, nachschlagen.
Viele der Datenmengen, die ich als Beispiele verwende, bestehen aus Bildern. Mit Machine Learning können Sie jedoch mehr tun, als nur Bilder zu erkennen: Sie können Text analysieren, Musik generieren und sogar Unterhaltungen führen. Allerdings eignet sich gerade die Bilderkennung für anschauliche Beispiele, weshalb ich diese Disziplin im ganzen Buch als Standardanwendung benutze.
Es gibt auch einige Onlineressourcen, die Sie kennen sollten. Eine davon ist die offizielle Webseite2 zur Originalausgabe dieses Buchs auf Pragmatic Bookshelf. Von dort können Sie auch den Quellcode der Beispiele herunterladen.
Verweise auf ProgML sind auf diese Weise gestaltet.
Des Weiteren gibt es zu diesem Buch eine Begleitwebsite namens ProgML3. Sie enthält (in englischer Sprache) einige zusätzliche Erklärungen und Einzelheiten, die nicht mehr in dieses Buch passten. An den entsprechenden Stellen im Text habe ich Verweise darauf angegeben.
Genug der Vorrede – legen wir nun los mit Teil I!
Teil 1
Von null auf Bilderkennung
Dieser Teil gibt eine Einführung in überwachtes Lernen. Innerhalb von nur zwei Kapiteln werden wir ein erstes Machine-Learning-System programmieren, das wir anschließend Schritt für Schritt weiterentwickeln, bis es leistungsfähig genug ist, um handgeschriebene Ziffern zu erkennen.
Ja, Sie haben richtig gelesen: Auf den nächsten etwa 100 Seiten werden wir ein Programm zur Bilderkennung schreiben. Was noch besser ist: Wir werden dazu keine Machine-Learning-Bibliothek verwenden. Abgesehen von einigen Allzweckfunktionen für arithmetische Berechnungen und grafische Darstellung schreiben wir den ganzen Code selbst.
Es ist sehr unwahrscheinlich, dass Sie in Ihrer zukünftigen Karriere jemals Machine-Learning-Algorithmen von Grund auf selbst schreiben müssen. Aber es einmal zu tun, um die Grundlagen richtig zu verstehen, ist von unschätzbarem Wert. Sie werden genau wissen, was jede einzelne Zeile des fertigen Programms tut. Danach wird Machine Learning für Sie nie wieder wie schwarze Magie wirken.
1
Einführung in Machine Learning
Softwareentwickler erzählen sich gern Veteranengeschichten. Sobald ein paar von uns in einer Kneipe zusammensitzen, fragt einer: »An was für Projekten arbeitet ihr gerade?« Dann nicken wir heftig und hören uns die amüsanten und teilweise furchtbaren Geschichten der anderen an.
Bei einem dieser abendlichen Geplänkel Mitte der 90er erzählte mir eine Freundin von dem unmöglichen Auftrag, an dem sie gerade arbeitete. Ihre Vorgesetzten wünschten sich von ihr ein Programm, das Röntgenaufnahmen analysieren und dadurch Krankheiten erkennen konnte, etwa eine Lungenentzündung.
Meine Freundin warnte die Geschäftsleitung vor, dass das ein hoffnungsloses Unterfangen sei, aber man wollte ihr nicht glauben. Wenn ein Radiologe das leisten konnte, so argumentierten die Manager, warum dann nicht auch ein Visual-Basic-Programm? Sie stellten ihr sogar einen Radiologen zur Seite, damit sie lernte, wie er vorging, und dies in Code umsetzen konnte. Diese