Terrestrial and Celestial Globes (Vol. 1&2). Edward Luther Stevenson
Receuel de voyages et de mémoires. Paris, 1830. 2 vols.) Vol. I, p. 1.
52 Zach, F. v. Monatliche Korrespondenz. Gotha, 1806. Vol. XIII, p. 157; Suter, H. Das Mathematiker-Verzeichniss im Fihrist. (In: Zeitschrift für Mathematik und Physik. Leipzig, 1892.) This work contains many references to distinguished oriental scholars who treated in their writings the doctrine of the sphere, the astrolabe, and the armillary sphere.
53 Wittstein, T. Historisch-astronomische Fragmente aus der arabischen Litteratur. (In: Abhandlungen zur Geschichte der Mathematik. Leipzig, 1892. Heft 6, p. 98.) The opinion is here expressed that a terrestrial globe by Edrisi never existed; Hadradauer, C. v. Die Feldzeugmeister Ritter von Hauslabische Kartensammlung. (In: Mitteilungen der K. K. Geographische Gesellschaft zu Wien. Wien, 1886. Neue Folge 19, pp. 387–388.) The opinion is expressed that Edrisi constructed a planisphere and not a globe. Amari, M. Storia dei Musulmani di Sicilia. Firenze, 1868. pp. 453 ff., 669 ff.
54 Dorn, B. Description of an Arabic celestial globe. (In: Transactions of the Royal Asiatic Society. London, 1829. Vol. II, pp. 371–392.)
55 Dorn, op. cit.
56 Dorn, op. cit.
57 See the list as given in the Fihrist, referred to in note 4. Naser ben Mohamed Abul Gioush, King of Castile, is referred to as having been much interested in astronomy, in which science he acquired such proficiency as to enable him to construct a number of very useful astronomical instruments.
58 Lelewel, J. Géographie du moyen âge. Bruxelles, 1857. Vol. I, p. 116; Jourdain. Mémoire sur l’observatoire de Méragah. Paris, 1810. It is well known that under the direction of Nasr-Eddin, who was called to the charge of this observatory by Hulagu Khan, astronomical instruments were constructed.
59 Dorn, op. cit.
60 See the Fihrist, also a list as given by Dorn.
61 Dorn, op. cit.
62 Dorn, op. cit.
63 Meucci, F. Il globo celeste arabico del seculo XI esistente nel Gabinetto degli strumenti antichi di Astronomia, Mathematica nel R. Istituto di Studi Superiori. Firenze, 1878.
64 Assemani, S. Globus coelestis cufico-arabicus Veliterani Musei Borgiani. Patavii, 1790.
65 Dorn, op. cit.
66 Beigel, W. Nachricht von einer Arabischen Himmelskugel mit Kufischer Schrift, welche im kurfürstlichen Mathematischen Salon zu Dresden aufbewahrt wird. (In: Bodes Astronomisches Jahrbuch für das Jahr 1808. Berlin, 1808. pp. 97 ff.); Drechsler, A. Der arabische Himmelsglobus angefertigt 1279 zu Meragha. Dresden, 1873.
67 Sedillot, L. A. Mémoire sur les instruments astronomiques des Arabes. Paris, 1841. pp. 117 ff.; same author. Matériaux pour servir à l’histoire comparée des sciences mathématiques chez les grecs et les orientaux. Paris, 1845. Vol. I, pp. 334 ff.; Jomard, M. Monuments de la Géographie. Paris, 1854. It is very doubtful that a date so early should be given to this globe.
68 Information courteously given by M. L. Vallée.
69 Dorn, B. Drei in der kaiserlichen öffentlichen Bibliothek zu St. Petersburg befindliche astronomische Instrumente mit arabischen Inschriften. (In: Mémoires de l’Académie Impériale des Sciences de St. Pétersbourg. St. Pétersbourg, 1865. VIIe serie, Tome IX, No. 1.)
Chapter IV
Terrestrial and Celestial Globes in the Christian Middle Ages
General attitude of the period toward the theories of the Greeks and the Romans.—Scripture statements as sources of information.—Inclination of certain early writers to accept the doctrine of a spherical earth.—The particular attitude of Pope Sylvester II.—The asserted interest of Emperor Frederick II in scientific studies.—Alfonso the Wise and the Alfonsian tables.—Interesting allusions in Alfonso’s work to globes and globe construction.—Giovanni Campano of Novara and the statements in his ‘Tractatis de sphera solida.’—The attitude of Albertus Magnus, Sacrobosco, Roger Bacon, Vincent of Beauvais, Dante.
FOR many centuries following the fall of the Western Roman Empire, there appears to have been in Christian Europe but little interest in the fundamental principles of geographical or astronomical science. The theories of the Greeks and the Romans respecting a spherical earth and a spherical firmament encompassing it, in illustration of which they had constructed globes, were not entirely forgotten, but such theories in general were considered to be valueless, hindrances rather than helps to the theological beliefs of the new Christian era.70
Though the early Church Fathers were inclined to reject the idea of a globular earth,71 there were not a few among them who found the theory of a circular earth an acceptable one. The latter, it is true, was an early Greek belief, referred to above as having been entertained in Homer’s day, and as having been passed down to succeeding centuries, but Christian writers did not find in the fact of its pagan origin a particular argument for accepting it; on the contrary, the Bible was held by many to be the fountain of all knowledge, and a sure guide no less in the solution of problems pertaining to the physical sciences than in the solution of problems pertaining to faith and doctrine. What was contained in the Scriptures found a more ready acceptance than what was to be found in pagan writers.72 Isaiah’s statement, “It is He that sitteth upon the circle of the earth,” was regarded as one altogether adequate on which to found a theory of the form of the earth, and it was accepted by such biblical interpreters as Lactantius, Cosmas Indicopleustes (Figs. 16, 17), Diodorus of Tarsus, Chrysostom, Severian of Gabala, by those who were known as the Syrians, by Procopius and Decuil.73 Men, however, such as Basil, Gregory of Nyssa, and Philoponos inclined strongly toward the Aristotelian doctrine of a spherical earth.74 Isidore of Seville appears to have