Análisis de fallas de estructuras y elementos mecánicos. Édgar Espejo Mora
generar suficiente daño por deformación plástica.
3.6.2 Fractografía de las fracturas por fatiga en metales
La formación de una fractura por fatiga en metales se presenta si: (1) hay una carga variable en el tiempo; (2) el rango de intensidad de esfuerzo aplicado supera al rango de intensidad de esfuerzos umbral del material (ΔKaplicado > ΔKumbral), lo cual se relaciona con que el pico de la onda de esfuerzo aplicada (σmáximo) sea mayor a la resistencia límite de fatiga corregida de la pieza (σmáximo > σF AT C), para la razón de carga de la onda de esfuerzo aplicada (R). Si las condiciones anteriores no se cumplen, ello implica que las microgrietas formadas en la nucleación no se propagarán, es decir, tenderán a permanecer en condición estable. La vida a fatiga de una pieza se verá seriamente acortada si hay daño mecánico previo por deformación superficial o concentradores severos de esfuerzo: (a) en la geometría de la pieza, (b) inducidos por el proceso de fabricación, (c) de tipo microestructural o (d) generados en servicio, por golpes, desgaste o corrosión.
A simple vista, las fracturas por fatiga de alto ciclaje de elementos mecánicos no mostrarán deformación plástica o distorsión notable de las piezas, en su conjunto o cerca de las zonas de fractura; sin embargo, en fracturas por fatiga de bajo ciclaje, ello sí podrá estar presente si se trata de un material dúctil (figuras 3.49 y 3.50, imágenes superiores izquierdas). No obstante lo anterior, en las fatigas de alto ciclaje, si se presenta fractura final súbita dúctil, es posible que en dicha zona esté presente la deformación macroscópica de la pieza.
En general, las superficies de las fracturas por fatiga de alto ciclaje se caracterizan por presentar dos zonas claramente diferenciadas: (1) zona de propagación estable de grietas en servicio, en la cual a simple vista, con lupas o estereoscopio óptico, se encontrará una textura tersa o granular; (2) zona de fractura final, donde la pieza agrietada no pudo seguir soportando la carga, y por lo tanto, ocurrió una fractura de manera súbita (crecimiento inestable de grietas) (figura 3.49, superior derecha).
Bajo inspección visual a ojo desnudo, con lupas o estereoscopio, la textura predominante en las superficies de propagación estable de grieta por fatiga de alto ciclaje de metales será la tersa (figura 3.51, superior izquierda). La textura tersa es consecuencia del predominio del mecanismo de fatiga transgranular. Si el mecanismo predominante es la fatiga cristalográfica, la textura visible será una combinación de la tersa y la granular, ya que dentro de cada grano habrá planos preferentes de propagación de las grietas de fatiga (figura 3.51, superior derecha). Cuando predominen los mecanismos de clivaje o agrietamiento intergranular, la textura predominante será la granular (figura 3.51, central izquierda). En la fatiga de bajo ciclaje, donde predomine el mecanismo de formación y coalescencia de microvacíos, la textura encontrada será la fibrosa (figura 3.51, central derecha). Todas estas texturas podrán presentar frotamiento total o parcial, es decir, daño de las superficies de fatiga por roce entre las dos caras de grieta (figura 3.51, inferior), lo cual se favorece cuando halla inversión total de carga (tracción-compresión) o cuando se combinen los modos de carga I y II o I y III.
El límite entre la zona de propagación estable de grieta y la zona de fractura final es una marca de playa, cuya geometría indica la forma que tenía el frente de grieta, inmediatamente antes de presentarse la fractura final (figura 3.49, superior derecha). Esta marca se forma por el contraste visual que se produce entre las texturas de la zona de propagación estable y las de la zona de fractura final.
Figura 3.49 Fracturas por fatiga de alto ciclaje
Nota. Muñón de cigüeñal fatigado a torsión, donde se puede notar que no hay deformación plástica de la pieza (superior izquierda); zonas típicas de una superficie de fractura por fatiga (superior derecha). Nótese que no hay marcas de playa intermedias; fractura por corrosión fatiga a flexión de un eje, donde hay una marca de playa intermedia (central izquierda); fractura por fatiga a flexión de un cigüeñal, donde se presentaron varias marcas de playa intermedias (central derecha); orígenes múltiples de fatiga separados por marcas ratchet (inferior izquierda); presencia de marcas de río en superficie de fractura por fatiga de un cigüeñal. Nótese que la aparición de las marcas coincide con un cambio en la orientación de la superficie de fractura (inferior derecha). Las flechas amarillas indican la dirección del crecimiento de las grietas.
Fuente: elaboración propia.
Figura 3.50 Fracturas por fatiga de bajo ciclaje
Nota. Tornillo de acero martensítico fatigado a bajo ciclaje en 32 ciclos, aplicando un 95 % del esfuerzo último. Nótese que hay deformación del elemento alrededor de la zona de fractura (superior izquierda); superficie de fractura por fatiga del tornillo, donde se nota su textura fibrosa (superior derecha); superficie de fractura por fatiga de bajo ciclaje, de un elemento estructural hecho en duraluminio 7075 T6, donde hay textura fibrosa y presencia de marcas de playa (inferior). Las flechas amarillas indican la dirección del crecimiento de las grietas.
Fuente: elaboración propia.
Lo más común en piezas mecánicas que fallan por fatiga es que tengan varias marcas de playa en la zona de propagación estable de grietas, las cuales se forman generalmente por: (1) corrosión u oxidación en el frente de grieta, producto de la acción del aire o del lubricante de la máquina durante un periodo de detención de la pieza; (2) cambios en el rango de intensidad de esfuerzos aplicados, que producen cambios en la cinética de crecimiento y en la rugosidad; (3) cambios en el estado de esfuerzos que originen variaciones en la orientación de la superficie de grieta; (4) cambios en la frecuencia de los ciclos de carga aplicados, que llevan a variaciones en la cinética del crecimiento. En las imágenes superior derecha, central izquierda y central derecha de la figura 3.49, se puede ver la apariencia que tiene una fractura por fatiga sin marcas de playa intermedias, la de una fractura con una marca de playa intermedia y la de una fractura con varias marcas de playa intermedias, respectivamente.
Figura 3.51 Texturas en las zonas de propagación estable de grietas por fatiga
Nota. Tersa en fatiga transgranular de acero bonificado 8640 con 40 RC (superior izquierda); combinación de tersa y granular en fatiga cristalográfica de duraluminio 7075 T6 (superior derecha); granular en fatiga intergranular de acero 5160 bonificado a 50 RC (central izquierda); fibrosa en fatiga de bajo ciclaje por formación y coalescencia de microvacíos, en duraluminio 7075 T6 (central derecha); tersa con frotamiento por roce entre las caras de grieta, en acero inoxidable AISI 410 (inferior). Las flechas amarillas indican la dirección de crecimiento de las grietas.
Fuente: elaboración propia.
En el caso de una fractura por fatiga en la cual solo se encuentre la marca de playa, que separa las zonas de propagación estable y de fractura final (figura 3.49, superior derecha), se puede afirmar que las condiciones ambientales, de nivel de esfuerzos y de orientación de estos, no cambiaron durante todo el proceso de crecimiento en servicio de la grieta de fatiga, es decir, esta pieza probablemente no