Biobased Composites. Группа авторов

Biobased Composites - Группа авторов


Скачать книгу
2 (4): 66.

      43 43 Yousef, S., Mumladze, T., Tatariants, M. et al. (2018). Cleaner and profitable industrial technology for full recovery of metallic and non‐metallic fraction of waste pharmaceutical blisters using switchable hydrophilicity solvents. Journal of Cleaner Production 197: 379–392.

      44 44 Alaaeddin, M., Sapuan, S., Zuhri, M. et al. (2019). Development of photovoltaic module with fabricated and evaluated novel backsheet‐based biocomposite materials. Materials 12 (18): 3007.

      45 45 Majeed, K., Jawaid, M., Hassan, A. et al. (2013). Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design 46: 391–410.

      46 46 Sanyang, M., Ilyas, R., Sapuan, S., and Jumaidin, R. (2018). Sugar palm starch‐based composites for packaging applications. In: Bionanocomposites for Packaging Applications, 125–147. Springer.

      47 47 AL‐Oqla, F.M., Omari, M.A., and Al‐Ghraibah, A. (2017). Predicting the potential of biomass‐based composites for sustainable automotive industry using a decision‐making model. In: Lignocellulosic Fibre and Biomass‐Based Composite Materials, 27–43. Elsevier.

      48 48 AL‐Oqla, F.M. and Rababah, M. (2017). Challenges in design of nanocellulose and its composites for different applications. In: Cellulose‐Reinforced Nanofibre Composites, 113–127. Elsevier.

      49 49 Alaaeddin, M., Sapuan, S., Zuhri, M. et al. (2019). Polymer matrix materials selection for short sugar palm composites using integrated multi criteria evaluation method. Composites Part B: Engineering 176: 107342.

      50 50 Abdulrahman, K.O., Abed, A.M., Bayode, A. et al. (2018). Hierarchical Composite Materials: Materials, Manufacturing, Engineering, vol. 8. Walter de Gruyter GmbH & Co KG.

      51 51 Alaaeddin, M., Sapuan, S., Zuhri, M. et al. (2019). Photovoltaic applications: status and manufacturing prospects. Renewable and Sustainable Energy Reviews 102: 318–332.

      52 52 Alaaeddin, M., Sapuan, S., Zuhri, M. et al. (2019). Physical and mechanical properties of polyvinylidene fluoride – short sugar palm fiber nanocomposites. Journal of Cleaner Production 235: 473–482.

      53 53 Faris Mohammed Khair Faris AL‐Oqla (2015). Enhancement of Evaluation Methodologies for Natural Fiber Composites Material Selection System (Ph.D). UPM.

      54 54 Al‐Widyan, M.I. and Al‐Oqla, F.M. (2011). Utilization of supplementary energy sources for cooling in hot arid regions via decision‐making model. International Journal of Engineering Research and Applications 1 (4): 1610–1622.

      55 55 Al‐Widyan, M.I. and Al‐Oqla, F.M. (2014). Selecting the most appropriate corrective actions for energy saving in existing buildings A/C in hot arid regions. Building Simulation 7 (5): 537–545. https://doi.org/10.1007/s12273‐013‐0170‐3.

      56 56 Dalalah, D., Al‐Oqla, F., and Hayajneh, M. (2010). Application of the Analytic Hierarchy Process (AHP) in multi‐criteria analysis of the selection of cranes. Jordan Journal of Mechanical and Industrial Engineering, JJMIE 4 (5): 567–578.

      57 57 Dweiri, F. and Al‐Oqla, F.M. (2006). Material selection using analytical hierarchy process. International Journal of Computer Applications in Technology 26 (4): 182–189. https://doi.org/10.1504/IJCAT.2006.010763.

      58 58 Alves, C., Ferrão, P., Silva, A. et al. (2010). Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production 18 (4): 313–327. https://doi.org/10.1016/j.jclepro.2009.10.022.

      59 59 Shah, D.U. (2016). Damage in biocomposites: stiffness evolution of aligned plant fibre composites during monotonic and cyclic fatigue loading. Composites Part A: Applied Science and Manufacturing 83: 160–168.

      60 60 Arena, M., Azzone, G., and Conte, A. (2012). A streamlined LCA framework to support early decision making in vehicle development. Journal of Cleaner Production 41: 105–113.

      61 61 Black, M., Whittaker, C., Hosseini, S. et al. (2011). Life cycle assessment and sustainability methodologies for assessing industrial crops, processes and end products. Industrial Crops and Products 34 (2): 1332–1339.

      62 62 Luz, S.M., Caldeira‐Pires, A., and Ferrao, P. (2010). Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: ecodesign and LCA as strategy for automotive components. Resources, Conservation and Recycling 54 (12): 1135–1144.

      63 63 Milani, A., Eskicioglu, C., Robles, K. et al. (2011). Multiple criteria decision making with life cycle assessment for material selection of composites. eXPRESS Polymer Letters 5 (12): 1062–1074. https://doi.org/10.3144/expresspolymlett.2011.104.

      64 64 Pegoretti, D.S., Mathieux, F., Evrard, D. et al. (2014). Use of recycled natural fibres in industrial products: a comparative LCA case study on acoustic components in the Brazilian automotive sector. Resources, Conservation and Recycling 84: 1–14.

       P. Shenbaga Velu1, N. J. Vignesh2, and N. Rajesh Jesudoss Hynes2

       1 Department of Mechanical Engineering, P.S.R Engineering College, Sivakasi, Tamil Nadu, India

       2 Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India


Скачать книгу