Hardness of Approximation Between P and NP. Aviad Rubinstein

Hardness of Approximation Between P and NP - Aviad Rubinstein


Скачать книгу
href="#fb3_img_img_3399a8ce-339b-54ab-908b-b41eb6922d11.png" alt="image"/>, and the last follows from Lemma 3.3.

      Using that f is O(1)-Lipschitz together with Equation (3.5), we get that

      with probability 1 − O(ϵ4).

      By Lemma 3.8 we know that image with probability 1 − O(ϵ4), which implies that

      Using similar arguments to those of Lemma 3.3 we can show that

      with probability 1 − O(ϵ4). As in the derivation of Equation (3.5), this implies:

      with probability 1 − O(ϵ4).

      With probability 1 − O(ϵ2), Inequalities (3.5), (3.4), (3.9), (3.8), (3.7), (3.6) hold simultaneously. In such a case, by the triangle inequality and by applying the inequalities in the exact order above, we have

       Proof

      Proof of Theorem 3.1. Any communication protocol that solves the ϵ4-Nash equilibrium problem in games of size N × N for N = 2Θ(n) induces a communication protocol for the problem SIMULATION END-OF-THE-LINE: Alice constructs her utility in the above presented game using her private information of the αs, Bob constructs his utility using the βs. They implement the communication protocol to find an ϵ4-Nash equilibrium, and then both of them know image, which is a δ-approximate fixed point of f (by Corollary 3.5). Using Dv, they decode the vertex v* and they know the first coordinate of v*.

      Using Corollary 3.4, we deduce that the communication complexity of ϵ4-Nash equilibrium in games of size 2Θ(n) × 2Θ(n) is at least 2Ω(n).

      ■

       3.5.5 n-player Game

       Theorem 3.4

      Theorem 3.2, restated. There exists a constant ϵ > 0 such that the communication complexity of (ϵ, ϵ)-weak approximate Nash equilibrium in n-player binary-action games is at least 2ϵn.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4RZURXhpZgAATU0AKgAAAAgABwESAAMAAAABAAEAAAEaAAUAAAABAAAAYgEbAAUAAAABAAAA agEoAAMAAAABAAIAAAExAAIAAAAeAAAAcgEyAAIAAAAUAAAAkIdpAAQAAAABAAAApAAAANAARKog AAAnEABEqiAAACcQQWRvYmUgUGhvdG9zaG9wIENTNiAoV2luZG93cykAMjAxOTowNjoxMCAxNjox MDo0OAAAA6ABAAMAAAABAAEAAKACAAQAAAABAAANK6ADAAQAAAABAAAQOQAAAAAAAAAGAQMAAwAA AAEABgAAARoABQAAAAEAAAEeARsABQAAAAEAAAEmASgAAwAAAAEAAgAAAgEABAAAAAEAAAEuAgIA BAAAAAEAABUeAAAAAAAAAEgAAAABAAAASAAAAAH/2P/tAAxBZG9iZV9DTQAB/+4ADkFkb2JlAGSA AAAAAf/bAIQADAgICAkIDAkJDBELCgsRFQ8MDA8VGBMTFRMTGBEMDAwMDAwRDAwMDAwMDAwMDAwM DAwMDAwMDAwMDAwMDAwMDAENCwsNDg0QDg4QFA4ODhQUDg4ODhQRDAwMDAwREQwMDAwMDBEMDAwM DAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgAoACCAwEiAAIRAQMRAf/dAAQACf/EAT8AAAEF AQEBAQEBAAAAAAAAAAMAAQIEBQYHCAkKCwEAAQUBAQEBAQEAAAAAAAAAAQACAwQFBgcICQoLEAAB BAEDAgQCBQcGCAUDDDMBAAIRAwQhEjEFQVFhEyJxgTIGFJGhsUIjJBVSwWIzNHKC0UMHJZJT8OHx Y3M1FqKygyZEk1RkRcKjdDYX0lXiZfKzhMPTdePzRieUpIW0lcTU5PSltcXV5fVWZnaGlqa2xtbm 9jdHV2d3h5ent8fX5/cRAAICAQIEBAMEBQYHBwYFNQEAAhEDITESBEFRYXEiEwUygZEUobFCI8FS 0fAzJGLhcoKSQ1MVY3M08SUGFqKygwcmNcLSRJNUoxdkRVU2dGXi8rOEw9N14/NGlKSFtJXE1OT0 pbXF1eX1VmZ2hpamtsbW5vYnN0dXZ3eHl6e3x//aAAwDAQACEQMRAD8A8+xf53+yf4K2qmL/AD39 kq2FdDnZfm+iUU2ESExreOQrTPoj4JO4UnAGt7htqqQSdyU4CayJanAEE9labbWe6pAKQCfGRDHK ALeLmlp1VUKIlTARMrRGPCyCkFEBTCQSyAUgEmqTSEQtXHmnTwCNE0JyFJJ0kkP/0PPsX+e/slav Sun29T6ljdPpe2uzKfsY987QYc/3bfd+YsrF/nf7JW10HqFPS+tYXUb2vfVi2eo9lYBeRteyGB7m N3e799XDdGmhIA5Bezar6bkP6aM+r9M05x6aymtrnWOuaw3bq2Bvurc1v9dM7pfVPWdjnByfXYGu dV6L94a87K3lm36Fj/Yx61cb69G6nEb1o5mXZj9SfmB9JbS5uMce7FpobZjW4r/WZdfvsr/m7avU r9b/AAaBmfWrGdi204DMnHsd06rArsYyvHAey92RZaK8bIs9Ch9Ltmxj3/6P+WgM2TYxVLl8G4nX 1aNHQOp34+ZmPofj42DRbe+66t7WONB9O7Gqs27PtG/c3Z/wdiDd0rquMGHJwcmgWvFVZspe3dYf o017m++x/wCYxv01q2fWPpl

Скачать книгу