Successful Drug Discovery, Volume 5. Группа авторов

Successful Drug Discovery, Volume 5 - Группа авторов


Скачать книгу
Successful Drug Discovery, vol. 1, 35–60. Weinheim: Wiley‐VCH.

      84 84 Banting, F.G., Best, C.H., Collip, J.B. et al. (1922). Pancreatic extracts in the treatment of diabetes mellitus. Can. Med. Assoc. J. 12: 141–146.

      85 85 Zuelzer, G. (1908). Ueber Versuche einer specifischen Fermenttherapie des Diabetes. Zeitschrift f. exp. Pathologie u. Therapie 5: 307–318.

      86 86 Scott, E.L. (1912). On the influence of intravenous injections of an extract of the pancreas on experimental pancreatic diabetes. Am. J. Physiol. 29: 306–310.

      87 87 Ionescu‐Tirgoviste, C. and Buda, O. (2017). Nicolae Constantin Paulescu. The First Explicit Description of the Internal Secretion of the Pancreas. Acta Med. Hist. Adriat. 15: 303–322.

      88 88 Kohler, G. and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.

      89 89 Stashenko, P., Nadler, L.M., Hardy, R., and Schlossman, S.F. (1980). Characterization of a human B lymphocyte‐specific antigen. J. Immunol. 125: 1678–1685.

      90 90 Tedder, T.F., Streuli, M., Schlossman, S.F., and Saito, H. (1988). Isolation and structure of a cDNA encoding the B1 (CD20) cell‐surface antigen of human B lymphocytes. Proc. Natl. Acad. Sci. U. S. A. 85: 208–212.

      91 91 Nadler, L.M., Stashenko, P., Hardy, R. et al. (1980). Serotherapy of a patient with a monoclonal‐antibody directed against a human lymphoma‐associated antigen. Cancer Res. 40: 3147–3154.

      92 92 (a) Boulianne, G.L., Hozumi, N., and Shulman, M.J. (1984). Production of functional chimaeric mouse/human antibody. Nature 312: 643–646.(b) Morrison, S.L., Johnson, M.J., Herzenberg, L.A., and Oi, V.T. (1984). Chimeric human antibody molecules: mouse antigen‐binding domains with human constant region domains. Proc. Natl. Acad. Sci. U. S. A. 81: 6851–6855.

      93 93 (a) Lampson, L.A. and Levy, R. (1979). A role for clonal antigens in cancer diagnosis and therapy. J. Natl. Cancer Inst. 62: 217–220.(b) Levy, R., Warnke, R., Dorfman, R.F., and Haimovich, J. (1977). The monoclonality of human B‐cell lymphomas. J. Exp. Med. 145: 1014–1028.

      94 94 Miller, R.A., Maloney, D.G., Warnke, R., and Levy, R. (1982). Treatment of B‐cell lymphoma with monoclonal anti‐idiotype antibody. N. Engl. J. Med. 306: 517–522.

      95 95 Pierpont, T.M., Limper, C.B., and Richards, K.L. (2018). Past, present, and future of rituximab – the world's first oncology monoclonal antibody therapy. Front. Oncol. 8: 163.

      96 96 Maloney, D.G., Liles, T.M., Czerwinski, D.K. et al. (1994). Phase‐I clinical‐trial using escalating single‐dose infusion of chimeric anti‐Cd20 monoclonal‐antibody (Idec‐C2b8) in patients with recurrent B‐cell lymphoma. Blood 84: 2457–2466.

      97 97 Brady, R.O., Kanfer, J.N., Bradley, R.M., and Shapiro, D. (1966). Demonstration of a deficiency of glucocerebroside‐cleaving enzyme in Gaucher's disease. J. Clin. Invest. 45: 1112–1115.

      98 98 Brady, R.O., Pentchev, P.G., Gal, A.E. et al. (1974). Replacement therapy for inherited enzyme deficiency – use of purified glucocerebrosidase in Gauchers‐disease. New Engl. J. Med. 291: 989–993.

      99 99 Brady, R.O. and Barton, N.W. (1994). Enzyme replacement therapy for Gaucher disease – critical investigations beyond demonstration of clinical efficacy. Biochem. Med. Metab. B 52: 1–9.

      100 100 Brady, R.O. and Barton, N.W. (1996). Enzyme replacement and gene therapy for Gaucher's disease. Lipids 31: S137–S139.

      101 101 Deegan, P.B. and Cox, T.M. (2012). Imiglucerase in the treatment of Gaucher disease: a history and perspective. Drug Des. Dev. Ther. 6: 81.

      102 102 Breslow, R. (2016). Successful Drug Discovery, vol. 2 (ed. W.E.C. János Fischer), 1–11. Weinheim: Wiley‐VCH.

      103 103 Yoshida, M., Kijima, M., Akita, M., and Beppu, T. (1990). Potent and specific‐inhibition of mammalian histone deacetylase both invivo and invitro by trichostatin‐A. J. Biolumin. Chemilumin. 265: 17174–17179.

      104 104 Finnin, M.S., Donigian, J.R., Cohen, A. et al. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401: 188–193.

      105 105 Kelly, W.K., Richon, V.M., O'Connor, O. et al. (2003). Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer Res. 9: 3578–3588.

      106 106 Molina, A.M., Van Der Mijn, J.C., Christos, P. et al. (2020). NCI 6896: a phase I trial of vorinostat (SAHA) and isotretinoin (13‐cis retinoic acid) in the treatment of patients with advanced renal cell carcinoma. Invest. New Drugs.

      107 107 Schiedel, M. and Conway, S.J. (2018). Small molecules as tools to study the chemical epigenetics of lysine acetylation. Curr. Opin. Chem. Biol. 45: 166–178.

      108 108 (a) Eckschlager, T., Plch, J., Stiborova, M., and Hrabeta, J. (2017). Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci. 18: 1414.(b) Jiang, Z.F., Li, W., Hu, X.C. et al. (2019). Tucidinostat plus exemestane for postmenopausal patients with advanced, hormone receptor‐positive breast cancer (ACE): a randomised, double‐blind, placebo‐controlled, phase 3 trial. Lancet Oncol. 20: 806–815.(c) Yang, F., Zhao, N., Hu, Y. et al. (2020). The development process: from SAHA to hydroxamate HDAC inhibitors with branched CAP region and linear linker. Chem. Biodivers. 17: e1900427.(d) Zhang, Q., Wang, S., Chen, J., and Yu, Z. (2019). Histone deacetylases (HDACs) guided novel therapies for T‐cell lymphomas. Int. J. Med. Sci. 16: 424–442.

      109 109 Lu, X.P., Ning, Z.‐Q., Li, Z.‐B. et al. (2016). Successful Drug Discovery (ed. W.E.C.J. Fischer), 89–114. Weinheim: Wiley‐VCH.

      110 110 Prusoff, W.H. (1959). Synthesis and biological activities of iododeoxyuridine, an analog of thymidine. Biochim. Biophys. Acta 32: 295–296.

      111 111 Clercq, E.D. and Holý, A. (2005). Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat. Rev. Drug Discovery 4: 928–940.

      112 112 De Clercq, E., Descamps, J., De Somer, P., and Holy, A. (1978). (S)‐9‐(2,3‐Dihydroxypropyl)adenine: an aliphatic nucleoside analog with broad‐spectrum antiviral activity. Science 200: 563–565.

      113 113 Declercq, E., Holy, A., Rosenberg, I. et al. (1986). A novel selective broad‐spectrum anti‐DNA virus agent. Nature 323: 464–467.

      114 114 De Clercq, E., Sakuma, T., Baba, M. et al. (1987). Antiviral activity of phosphonylmethoxyalkyl derivatives of purine and pyrimidines. Antiviral Res. 8: 261–272.

      115 115 Pradere, U., Garnier‐Amblard, E.C., Coats, S.J. et al. (2014). Synthesis of nucleoside phosphate and phosphonate prodrugs. Chem. Rev. 114: 9154–9218.

      116 116 Wittayanarakul, K., Aruksakunwong, O., Saen‐Oon, S. et al. (2005). Insights into saquinavir resistance in the G48V HIV‐1 protease: quantum calculations and molecular dynamic simulations. Biophys. J. 88: 867–879.

      117 117 Ghosh, A.K., Sridhar, P.R., Leshchenko, S. et al. (2006). Structure‐based design of novel HIV‐1 protease inhibitors to combat drug resistance. J. Med. Chem. 49: 5252–5261.

      118 118 (a) Ghosh, A.K., Anderson, D.D., Weber, I.T., and Mitsuya, H. (2012). Enhancing protein backbone binding – a fruitful concept for combating drug‐resistant HIV. Angew. Chem. Int. Ed. 51: 1778–1802.(b) Ghosh, A.K., Chapsal, B.D., Weber, I.T., and Mitsuya, H. (2008). Design of HIV protease inhibitors targeting protein backbone: an effective strategy for combating drug resistance. Acc. Chem. Res. 41: 78–86.

      119 119 Surleraux, D.L., Tahri, A., Verschueren, W.G. et al. (2005). Discovery and selection of TMC114, a next generation HIV‐1 protease inhibitor. J. Med. Chem. 48: 1813–1822.

      120 120 King, N.M., Prabu‐Jeyabalan, M., Nalivaika, E.A. et al. (2004). Structural and thermodynamic basis for the binding of TMC114, a next‐generation human immunodeficiency virus type 1 protease inhibitor. J. Virol. 78: 12012–12021.

      121 121 Umezawa, H., Imoto, M., Sawa, T. et al. (1986). Studies on a new epidermal growth factor‐receptor kinase inhibitor, erbstatin, produced by MH435‐hF3. J. Antibiot. (Tokyo) 39: 170–173.

      122 122


Скачать книгу