The Canterbury Puzzles, and Other Curious Problems. Henry Ernest Dudeney

The Canterbury Puzzles, and Other Curious Problems - Henry Ernest Dudeney


Скачать книгу
add up 15. It is quite easy; and there is only one way of doing it, for we do not count as different the arrangements obtained by merely turning round the square and reflecting it in a mirror. Now if we wish to make a magic square of the 16 numbers, 1 to 16, there are just 880 different ways of doing it, again not counting reversals and reflections. This has been finally proved of recent years. But how many magic squares may be formed with the 25 numbers, 1 to 25, nobody knows, and we shall have to extend our knowledge in certain directions before we can hope to solve the puzzle. But it is surprising to find that exactly 174,240 such squares may be formed of one particular restricted kind only—the bordered square, in which the inner square of nine cells is itself magic. And I have shown how this number may be at once doubled by merely converting every bordered square—by a simple rule—into a non-bordered one.

      Then vain attempts have been made to construct a magic square by what is called a "knight's tour" over the chess-board, numbering each square that the knight visits in succession, 1, 2, 3, 4, etc.; and it has been done, with the exception of the two diagonals, which so far have baffled all efforts. But it is not certain that it cannot be done.

      Though the contents of the present volume are in the main entirely original, some very few old friends will be found; but these will not, I trust, prove unwelcome in the new dress that they have received. The puzzles are of every degree of difficulty, and so varied in character that perhaps it is not too much to hope that every true puzzle lover will find ample material to interest—and possibly instruct. In some cases I have dealt with the methods of solution at considerable length, but at other times I have reluctantly felt obliged to restrict myself to giving the bare answers. Had the full solutions and proofs been given in the case of every puzzle, either half the problems would have had to be omitted, or the size of the book greatly increased. And the plan that I have adopted has its advantages, for it leaves scope for the mathematical enthusiast to work out his own analysis. Even in those cases where I have given a general formula for the solution of a puzzle, he will find great interest in verifying it for himself.

       Table of Contents

      A Chance-gathered company of pilgrims, on their way to the shrine of Saint Thomas à Becket at Canterbury, met at the old Tabard Inn, later called the Talbot, in Southwark, and the host proposed that they should beguile the ride by each telling a tale to his fellow-pilgrims. This we all know was the origin of the immortal Canterbury Tales of our great fourteenth-century poet, Geoffrey Chaucer. Unfortunately, the tales were never completed, and perhaps that is why the quaint and curious "Canterbury Puzzles," devised and propounded by the same body of pilgrims, were not also recorded by the poet's pen. This is greatly to be regretted, since Chaucer, who, as Leland tells us, was an "ingenious mathematician" and the author of a learned treatise on the astrolabe, was peculiarly fitted for the propounding of problems. In presenting for the first time some of these old-world posers, I will not stop to explain the singular manner in which they came into my possession, but proceed at once, without unnecessary preamble, to give my readers an opportunity of solving them and testing their quality. There are certainly far more difficult puzzles extant, but difficulty and interest are two qualities of puzzledom that do not necessarily go together.

      1.—The Reve's Puzzle.

      The Reve was a wily man and something of a scholar. As Chaucer tells us, "There was no auditor could of him win," and "there could no man bring him in arrear." The poet also noticed that "ever he rode the hindermost of the route." This he did that he might the better, without interruption, work out the fanciful problems and ideas that passed through his active brain. When the pilgrims were stopping at a wayside tavern, a number of cheeses of varying sizes caught his alert eye; and calling for four stools, he told the company that he would show them a puzzle of his own that would keep them amused during their rest. He then placed eight cheeses of graduating sizes on one of the end stools, the smallest cheese being at the top, as clearly shown in the illustration. "This is a riddle," quoth he, "that I did once set before my fellow townsmen at Baldeswell, that is in Norfolk, and, by Saint Joce, there was no man among them that could rede it aright. And yet it is withal full easy, for all that I do desire is that, by the moving of one cheese at a time from one stool unto another, ye shall remove all the cheeses to the stool at the other end without ever putting any cheese on one that is smaller than itself. To him that will perform this feat in the least number of moves that be possible will I give a draught of the best that our good host can provide." To solve this puzzle in the fewest possible moves, first with 8, then with 10, and afterwards with 21 cheeses, is an interesting recreation.

      2.—The Pardoner's Puzzle.

      The gentle Pardoner, "that straight was come from the court of Rome," begged to be excused; but the company would not spare him. "Friends and fellow-pilgrims," said he, "of a truth the riddle that I have made is but a poor thing, but it is the best that I have been able to devise. Blame my lack of knowledge of such matters if it be not to your liking." But his invention was very well received. He produced the accompanying plan, and said that it represented sixty-four towns through which he had to pass during some of his pilgrimages, and the lines connecting them were roads. He explained that the puzzle was to start from the large black town and visit all the other towns once, and once only, in fifteen straight pilgrimages. Try to trace the route in fifteen straight lines with your pencil. You may end where you like, but note that the omission of a little road at the bottom is intentional, as it seems that it was impossible to go that way.

      3.—The Miller's Puzzle.

      The Miller next took the company aside and showed them nine sacks of flour that were standing as depicted in the sketch. "Now, hearken, all and some," said he, "while that I do set ye the riddle of the nine sacks of flour. And mark ye, my lords and masters, that there be single sacks on the outside, pairs next unto them, and three together in the middle thereof. By Saint Benedict, it doth so happen that if we do but multiply the pair, 28, by the single one, 7, the answer is 196, which is of a truth the number shown by the sacks in the middle. Yet it be not true that the other pair, 34, when so multiplied by its neighbour, 5, will also make 196. Wherefore I do beg you, gentle sirs, so to place anew the nine sacks with as little trouble as possible that each pair when thus multiplied by its single neighbour shall make the number in the middle." As the Miller has stipulated in effect that as few bags as possible shall be moved, there is only one answer to this puzzle, which everybody should be able to solve.

      4.—The Knight's Puzzle.

      This worthy man was, as Chaucer tells us, "a very perfect, gentle knight," and "In many a noble army had he been: At mortal battles had he been fifteen." His shield, as he is seen showing it to the company at the "Tabard" in the illustration, was, in the peculiar language of the heralds, "argent, semée of roses, gules," which means that on a white ground red roses were scattered or strewn, as seed is sown by the hand. When this knight was called on to propound a puzzle, he said to the company, "This riddle a wight did ask of me when that I fought with the lord of Palatine against the heathen in Turkey. In thy hand take a piece of chalk and learn how many perfect squares thou canst make with one of the eighty-seven roses at each corner thereof." The reader may find it an interesting problem to count the number of squares that may be formed on the shield by uniting four roses.


Скачать книгу