Science in Short Chapters. W. Mattieu Williams

Science in Short Chapters - W. Mattieu Williams


Скачать книгу
is yet another consideration, and one of vital importance, to be taken into account, viz., that—whether we use the electric light derived from a dynamo-electric source, or coal-gas—our primary source of illuminating power is coal, or rather the chemical energy derivable from the combination of its hydrogen and carbon with oxygen. Now this chemical energy is a limited quantity, and the progress of Science can no more increase this quantity than it can make a ton of coal weigh 21 cwts. by increasing the quantity of its gravitating energy.

      The demonstrable limit of scientific possibilities is the economical application of this limited store of energy, by converting it into the demanded form of force without waste. The more indirect and roundabout the method of application, the greater must be the loss of power in the course of its transfer and conversion. In heating the boiler that sets the dynamo-electric machine to work, about one-half the energy of the coal is wasted, even with the best constructed furnaces. This merely as regards the quantity of water evaporated. In converting the heat-force into mechanical power—raising the piston, etc., of the steam-engine—this working half is again seriously reduced. In further converting this residuum of mechanical power into electrical energy, another and considerable loss is suffered in originating and sustaining the motion of the dynamo-electric machine, in the dissipation of the electric energy that the armature cannot pick up, and in overcoming the electrical resistances to its transfer.

      I am unable to state the amount of this loss in trustworthy figures, but should be very much surprised to learn that, with the best arrangements now known, more than one-tenth of the original energy of the coal is made practically available. This small illuminating residuum may, and doubtless will, be increased by the progress of practical improvement; but from the necessary nature of the problem, the power available for illumination at the end of the series must always be but a small portion of that employed at the beginning.

       In burning the gas derived from coal we obtain its illuminating power directly, and if we burn it properly we obtain nearly all. The coke residuum is also directly used as a source of heat. The chief waste of the original energy in the gas-works is represented by that portion of the coke that is burned under the retorts, and in obtaining the relatively small amount of steam-power demanded in the works. These are far more than paid for by the value of the liquid hydrocarbons and the ammonia salts, when they are properly utilized.

      In concluding my narrative, I may add that after Mr. Starr’s death the patentees offered to engage me on certain terms to carry on his work. I declined this, simply because I had seen enough to convince me of the impossibility of any success at all corresponding to their anticipations. During the intervening thirty years I have abstained from further meddling with the electric light, because all that I had seen then, and have heard of since, has convinced me that—although as a scientific achievement the electric light is a splendid success—its practical application to all purposes where cost is a matter of serious consideration is hopeless, and must of necessity continue to be so.

      Whoever can afford to pay some shillings per hour for a single splendid light of solar completeness can have it without difficulty, but not so where the cost in pence per hour per burner has to be counted.

      I should add that before the publication of King’s specification, Mr. (now Sir William) Grove proposed the use of a helix or coil of platinum, made incandescent by electricity, as a light to be used for certain purposes. This was shown at the Royal Society on or about December 1, 1845.

      Since the publication of the above in 1879, I have learned, from a paper in the “Quarterly Journal of Science,” by Professor Ayrton, that in 1841 an English patent was granted to De Moylens for electric lighting by incandescence.

       Table of Contents

      In the course of a pedestrian excursion made in the summer of 1855 I came upon the Aachensee, one of the lakes of North Tyrol, rarely visited by tourists. It is situated about 30 miles N.E. of Innispruck, and fills the basin of a deep valley, the upper slopes of which are steep and richly wooded. The water of this lake is remarkably transparent and colorless. With one exception, that of the Fountain of Cyane—a deep pool forming the source of the little Syracusan river—it is the most transparent body of water I remember to have seen. This transparency revealed a very remarkable sub-aqueous landscape. The bottom of the lake is strewn with branches and trunks of trees, which in some parts are in almost forest-like profusion. As I was alone in a rather solitary region, and carrying only a satchel of luggage, my only means of further exploration were those afforded by swimming and diving. Being an expert in these, and the July summer day very calm and hot, I remained a long time in the water, and, by swimming very carefully to avoid ripples, was able to survey a considerable area of the interesting scene below.

      The fact which struck me the most forcibly, and at first appeared surprising, was the upright position of many of the large trunks, which are of various lengths—some altogether stripped of branches, others with only a few of the larger branches remaining. The roots of all these are more or less buried, and they present the appearance of having grown where they stand. Other trunks were leaning at various angles and partly buried, some trunks and many branches lying down.

      On diving I found the bottom to consist of a loamy powder of gray color, speckled with black particles of vegetable matter—thin scaly fragments of bark and leaves. I brought up several twigs and small branches, and with considerable difficulty, after a succession of immersions, succeeded in raising a branch about as thick as my arm and about eight feet long, above three-fourths of which was buried, and only the end above ground in the water. My object was to examine the condition of the buried and immersed wood, and I selected this as the oldest piece I could reach.

      I found the wood very dark, the bark entirely gone, and the annual layers curiously loosened and separable from each other, like successive rings of bark. This continued till I had stripped the stick to about half of its original thickness, when it became too compact to yield to further stripping.

      This structure apparently results from the easy decomposition of the remains of the original cambium of each year, and may explain the curious fact that so many specimens of fossilized wood exhibit the original structure of the stem, although all the vegetable matter has been displaced by mineral substances. If this stem had been immersed in water capable of precipitating or depositing mineral matter in very small interstices, the deposit would have filled up the vacant spaces between these rings of wood as the slow decomposition of the vegetable matter proceeded. At a later period, as the more compact wood became decomposed, it would be substituted by a further deposit, and thus concentric strata would be formed, presenting a mimic counterpart of the vegetable structure.

      The stick examined appeared to be a branch of oak, and was so fully saturated with water that it sank rapidly upon being released.

      On looking around the origin of this sub-aqueous forest was obvious enough. Here and there the steep wooded slopes above the lake were broken by long alleys or downward strips of denuded ground, where storm torrents, or some such agency, had cleared away the trees and swept most of them into the lake. A few uprooted trees lying at the sides of these bare alleys told the story plainly enough. Most of these had a considerable quantity of earth and stones adhering to their roots: this explains the upright position of the trees in the lake.

      Such trees falling into water of sufficient depth to enable them to turn over must sink root downwards, or float in an upright position, according to the quantity of adhering soil. The difference of depth would tend to a more rapid penetration of water in the lower parts, where the pressure would be greatest, and thus the upright or oblique position of many of the floating trunks would be maintained till they absorbed sufficient water to sink altogether.

      It is generally assumed that fossil trees which are found in an upright position have grown on the spot where they are found. The facts I have stated show that this inference is by no means necessary, not even when the roots are attached and some soil is found among them. In order to account for the other surroundings of these fossil trees a very violent hypothesis is commonly made, viz., that the soil on which they grew sank


Скачать книгу