Science in Short Chapters. W. Mattieu Williams

Science in Short Chapters - W. Mattieu Williams


Скачать книгу
above referred to will break through the shell of combustion, and drag down more or less of the outer vapor into the lower and hotter regions of dissociated gases.

      As there can be no action without equal and contrary reaction, there can be no vortices, either in the solar atmosphere or a terrestrial stream, without corresponding upheavals. These upheavals will eject the lower dissociated gases more or less completely through the vaporous jacket which restrains their normal radiations, and, thus liberated, they will rush into combination with an explosive energy comparable to that which they display in our laboratories; not, however, with an instantaneous flash, but with a continuous rocket-like combustion, the rapidity of which will be determined by the possibility of radiation. The heat evolved by this combustion, acting simultaneously with the diminution of pressure, will effect a continually augmenting expansion of these upheaved gases, and as the rapidity of combustion will be accelerated in proportion to elevation above the restraining vapors, an outspreading far in excess of that which would be due to the original upheaving force, is to be expected.

      The reader who is acquainted with the phenomena of the solar prominences will at once perceive how all these expectations are fulfilled by actual observations, especially by the more recent observations of Zöllner, Secchi, etc., which exhibit the typical solar prominence as a stem or jet rushing upwards through some restraining medium, and then expanding into a cloud-like or palm-tree form after escaping from this restraint. I need scarcely add that the clashing tide waves are the faculæ, and the vortices the sun-spots.

      My present business, however, is to show how these vortices and eruptions—this down-rush in one part of the solar atmosphere and up-rush in another—contribute to the permanent maintenance of the solar light and heat. It must be understood that these outbursts are only visible to us as luminous prominences during the period of their explosive outburst, and while still subject to great expansive tension. Long after they have ceased to be visible to us their expansion must continue, until they finally and fully mingle with the medium into which they are flung, and attain a corresponding degree of rarefaction. This must occur at tens and hundreds of thousands of miles above the photosphere, according to the magnitude of the ejection. The spectroscopic researches of Frankland and Lockyer having shown that the atmospheric pressure at about the outer surface of the photosphere does not far exceed that of our atmosphere, I may safely regard all the upper portion of these solar ejections as having left the solar atmosphere proper, and become commingled with the general interstellar medium.

      If the sun were stationary, or merely rotating, in the midst of this universal atmosphere, the same material that is ejected to-day would in the course of time return, and be whirled into the great sun-spot eddies; but such is not the case; the sun is driving through the ether with a velocity of about 450,000 miles per twenty four hours.

      What must be the consequence of this motion? The sun will carry its own special atmospheric matter with it; but it cannot thus carry the whole of the interstellar medium. There must be a limit, graduated no doubt, but still a practical limit, at which its own atmosphere will leave behind, or pass through, the general atmospheric matter. There must be a heaping or condensation of this matter in the front, a rarefaction or wake in the rear, and a continuous bow of newly encountered atmosphere around the boundaries in the opposite direction to that of the sun’s motion. The result of this must be that a great portion of the ejected atmospheric matter of the prominences will be swept permanently to the rear, and its place supplied by the material occupying the space into which the sun is advancing. We are thus presented with a mighty machinery of solar respiration; some of this newly arriving atmospheric matter must be stirred into the vortices, its quantity being exactly equivalent to that of the old material expired by the explosive eruptions, and left in the rear.

      Now, the new atmospheric matter which is thus encountered and inspired, is the recipient of the everlasting radiations whose destination is the subject of Mr. Grove’s inquiry; and these, when thus encountered and compressed, will of necessity evolve more or less of the heat which, through millions of millions of centuries they have been gradually absorbing; while, on the other hand, the expired or ejected matter of the gaseous eruptions will, like the artificially compressed air above referred to, have lost all the heat which during its solar existence it had by compression, dissociation, and re-combination contributed to the solar radiations. Therefore, when again fully expanded, it will be cooler than the general medium from which it was originally inspired by the advancing sun.

      The daily supply of fresh atmospheric fuel will be a cylinder of ether of the same diameter as the sun, and 450,000 miles in length! I have calculated the weight of this cylinder of ether on the assumption (which of course is purely arbitrary) that the density of the interstellar medium is one ten-thousandth part of that of our atmosphere. It amounts to 14,313,915,000,000,000,000 tons, affording a supply of 165 millions of millions of tons per second; or, if we assume the interstellar medium to have a density of only one-millionth of that of our atmosphere, the supply would be rather more than one and a half millions of millions of tons per second. The proportion of this which is effective in the manner above stated is that which becomes stirred into the lower regions of the sun in exchange for the ejected matter of the prominences.

      I will not here dwell upon the bombardment hypothesis, beyond observing that my explanation of solar phenomena supplies a continuous bombardment of the above-stated magnitude without adding anything to the magnitude of the sun.

      So far, then, I answer Mr. Grove’s question, by showing that the heat radiated into space by each of the solid orbs that people its profundities, is received by the universal atmospheric medium; is gathered again by the breathing of wandering suns, who inspire as they advance the breath of universal heat and light and life; then by impact, compression, and radiation, they concentrate and re-distribute its vitalizing power; and after its work is done, expire it in the broad wake of their retreat, leaving a track of cool exhausted ether—the ash-pits of the solar furnaces—to reabsorb the general radiations, and thus maintain the eternal round of life.

      But ere this, a great difficulty has probably presented itself to the mind of the reader. He will refer to the calculations that have been made in order to determine the actual temperature of the solar surface and the intensity of its luminosity. Both of these are vastly in excess of those obtained in our laboratory experiments by the combustion of the elements of water. Even taking into consideration the dissociated carbonic acid whose elements should be burning in the photosphere with those of water, and adding to these the volatile metals of the solar nucleus whose dissociated vapors must, under the circumstances stated, be commingled with those of the solar atmosphere, and therefore contribute to the luminosity by their combustion, still by burning here on the earth a jet of such mixed gases and vapors we should not obtain any approach to either the luminosity or the temperature which is usually attributed to the sun.

      I have made a very few simple experiments, the results of which remove these difficulties. They were conducted with the assistance of Mr. Jonathan Wilkinson, the official gas examiner to the Sheffield Corporation, using his photometric and gas-measuring apparatus. We first determined the amount of light radiated by a single fish-tail gas-burner consuming a measured quantity of gas per hour. We found when another was placed behind this, so that all the light of the second had to pass through the first, that the light of the two (measured by the illuminating intensity of their radiations upon a screen just as the solar luminosity has been measured) was just double that of one flame, three flames (still presenting to the photometric screen only the surface of one) gave it three times the amount of illumination, and so on with any number of flames we were able to test. Mr. Wilkinson has since arranged 100 flames on the same, principle, i.e., so that the 99 hinder flames shall all radiate through the one presented to the screen, thus affording the same surface as a single flame, but having 100 times its thickness or depth, and he finds that the law indicated by our first experiments is fully verified; that the 100 flames thus arranged illuminate the screen 100 times as intensely as the single flame. Other modifications of these experiments, described in Chapter vii. of “The Fuel of the Sun,” establish the principle that a common hydrocarbon gas flame is transparent to its own radiations, or, in other words, that the amount of light radiated from such a flame, and its apparent intensity of luminosity, is proportionate to its thickness; therefore the luminosity of the sun may be produced by a photosphere having no greater


Скачать книгу