Укрощение больших данных. Как извлекать знания из массивов информации с помощью глубокой аналитики. Билл Фрэнкс
эти данные используются для совершенствования бизнеса?
Вокруг больших данных поднята такая шумиха, что многие полагают: только благодаря большому объему, скорости передачи и разнообразию они важнее всех других. Это не так. Как мы увидим далее в этой главе (в разделе «Большая часть больших данных не имеет значения»), в больших данных доля бесполезного или малозначимого контента намного выше, чем в любом привычном источнике данных. Когда вы отберете действительно нужную вам информацию, источник больших данных может показаться вам не таким уж большим. Но это ничего не значит, поскольку после обработки данных их объем не имеет значения. Важно то, что вы будете делать с полученными результатами.
Значимость большим данным придает вовсе не то, что они большие, и даже не то, что они представляют собой данные. Важно то, как вы анализируете и применяете эти данные для развития своего бизнеса.
Что делает большие данные интересными для вас и вашей организации? Вовсе не то, что они «большие». Самое интересное связано с новыми мощными средствами их анализа. Об этом и поговорим.
Чем большие данные отличаются от традиционных данных?
Большие данные отличаются от традиционных данных рядом важных характеристик. Не каждый источник больших данных имеет все перечисленные особенности, однако большинству свойственно следующее.
Во-первых, большие данные часто автоматически генерируются машиной без участия человека. Традиционные источники данных всегда предполагают присутствие человека. Возьмем, к примеру, розничные или банковские транзакции, записи с содержанием телефонных звонков, доставку товаров или выставление счетов на оплату. Все эти действия подразумевают присутствие человека, который способствует созданию данных. Кто-то должен внести деньги, сделать покупку, позвонить по телефону, отправить посылку или сделать платеж. В каждом случае частью процесса создания новых данных остается человек, совершающий какие-либо действия. С большими данными дело обстоит иначе. Многие источники больших данных генерируются вообще без взаимодействия с человеком, например встроенный в двигатель датчик генерирует данные, даже если никто его об этом не просит.
Во-вторых, большие данные обычно соотносятся с совершенно новыми источниками данных. Это не просто расширение возможностей сбора существующих данных. Например, через интернет потребители могут взаимодействовать с банком или магазином, однако выполняемые ими операции принципиально не отличаются от традиционных. Они просто выполняют те же операции через другой канал. Организация может собрать данные о транзакциях, совершенных через интернет, однако они мало чем отличаются от транзакций, которые совершались раньше. Тем не менее сбор данных о поведении потребителей в процессе совершения транзакции предоставляет принципиально новую информацию, о которой мы подробно поговорим во второй