The Story of the Atlantic Cable. Sir Charles Bright

The Story of the Atlantic Cable - Sir Charles Bright


Скачать книгу
by enclosing the wire (previously pitched) in a split rattan, and then paying the rattan round with tarred yarn; or the wire may—as in some experiments by Colonel Pasley,{16} R.E., at Chatham—be surrounded by strands of tarred rope, and this by pitched yarn. An insulated rope of this kind may be spread across a wet field—nay, even led through a river—and will still conduct the electrical signals, without any appreciable loss.” In 1840 Professor Wheatstone (afterward Sir Charles Wheatstone, F.R.S.) explained to a committee of the House of Commons the methods by which he thought it possible to establish telegraphic communication between Dover and Calais. He appears to have been unaware of the prior experiments just alluded to, for his system of insulation, though more fully developed, was practically the same.

      Prof. S. F. B. Morse, the well-known inventor of the telegraph apparatus bearing his name, also made a study of this problem in 1842, when he laid down an insulated copper wire across New York harbor, through which he transmitted electric currents. Hemp soaked in tar and pitch, surrounded with a layer of india-rubber, constituted the insulation. Morse was a great letter-writer, and records of his early work are solely based on his own statements at a time when he noted in his diary: “I am crushed for want of means. My stockings all want to see my mother, and my hat is hoary with age.” In 1845 Ezra Cornell, who was afterward the founder of Cornell University, laid a cable, twelve miles long, to connect Fort Lee with New York, in the Hudson River. The cable consisted of two cotton-covered copper wires, insulated with india-rubber, and enclosed in a leaden pipe. It worked well for several months, but was broken by ice in 1846. In that year Mr. Charles{17} West paid out by hand an india-rubber insulated wire in Portsmouth harbor, through which he signaled from a boat to the shore. The experiment was intended as the forerunner of the establishment of telegraphic communication between England and France, but for want of the necessary funds was not followed up.

      Subaqueous, or marine, telegraphy owed its institution, however, to the introduction of gutta-percha, for insulating purposes. The late Dr. Werner Siemens having invented a machine for applying gutta-percha to a wire—similar in principle to the machine for making macaroni—considerable lengths of gutta-percha-covered subterranean wires were laid in Germany and Prussia between 1846 and 1849; and in 1849 Siemens laid a gutta-percha insulated conductor in the harbor of Kiel which was used for firing mines. Following this came the extensive system of underground lines laid down in England for the Magnetic Telegraph Company by their engineer, Mr. (afterward Sir Charles) Bright, in accordance with a patent of his. Short lengths were also laid, mostly through tunnels, by the Electric Telegraph Company a little later.

      On the 10th day of January, 1849, the late Mr. C. V. Walker, F.R.S., electrician to the Southeastern Railway, laid a gutta-percha-covered conductor, two miles long, in the English Channel. The wire was coiled on a drum on board the laying vessel, from which it was paid out as the vessel progressed. Starting from the beach at Folkestone, the line was joined up to an aerial wire, 83 miles in length, along the Southeastern Railway, and Mr. Walker, on board the{18} Princess Clementine, succeeded in exchanging telegrams with London.

      On the 23d July, 1845, the brothers Jacob and John Watkins Brett addressed themselves to Sir Robert Peel, as Prime Minister and First Lord of the Treasury, relative to a proposal of theirs for establishing a general system of telegraphic communication—oceanic and otherwise. They were referred to the Admiralty, Foreign Office, etc., and gradually became involved in a departmental correspondence—more academic than useful—in which they were passed backward and forward from one government office to another. After considerable negotiations with both governments concerned, a concession was at last obtained by the Messrs. Brett, and a company formed for instituting telegraphy between England and France by means of a line from Dover to Calais. Twenty-five nautical miles of No. 14 copper wire covered with ½-inch thickness of gutta-percha was then manufactured, the electrician’s tongue being the only test applied to some of the lengths. The shore ends for about two miles from each terminus consisted of a No. 16 B.W.G.[4] conductor covered with cotton soaked in india-rubber solution, the whole being incased in a very thick lead tube. The rest of the line was composed of the gutta-percha insulated wire above described, with 30-pound leaden weights fastened to it at 100-yard intervals,[5] the laying{19} vessel having to be stopped each time one was put on. The submersion of the line was successfully effected, but it only lived to speak a few more or less incoherent words—one being a short complimentary communication to Louis Napoleon Bonaparte, shortly afterward Emperor of the French. It subsequently transpired that a Boulogne fisherman had hooked up the line with his trawl, “mistaking it for a new kind of seaweed!” This enterprise excited little attention at the time. It was, in fact, regarded as a “mad freak” and even as a “gigantic swindle.” When accomplished, The Times remarked, in the words of Shakespeare, “The jest of yesterday has become the fact of to-day”; and a few hours later it might with equal truth have been said that “the fact of yesterday has become the jest of to-day!” The feasibility of laying such a line and of transmitting electric signals across the Channel had, however, been proved. The signals obtained had, moreover, the effect of eradicating the then very prevalent belief that, even if the line were successfully submerged, the current would become dissipated in the water.[6] It now remained to find a satisfactory method of protecting the insulated conductor from injury during and after laying. The excellence of the insulating material was recently testified to when some portions were recovered.{20}

      Though the above line was not, practically speaking, turned to any account, it was by no means abortive, for the signals it had conveyed were sufficient to “save the concession,” which was renewed by the French Government on December 19, 1850. But the previous failure had made capitalists distrustful; and only some weeks before the expiration of the time limit the necessary funds had not been raised.

      Dover-Calais, 1850-’51.—The undertaking was saved by the energy and talent of one man, Mr. T. R. Crampton, an eminent railway engineer. He raised the necessary capital (£15,000), putting his own name down for half this amount and being joined by Lord de Mauley and the late Sir James Carmichael. He (Mr. Crampton) also settled the type of cable to be laid—based on the iron pit-rope; this, in one form or another, practically remains the type of to-day. The cable contained four copper conducting-wires of No. 16 B.W.G., each one covered with two layers of gutta-percha to No. 1 gage; these four insulated conductors, or “cores,” were laid together and the interstices filled up with strands of tarred Russian hemp. The outer covering consisted of ten galvanized-iron wires of No. 1 gage wound spirally round the bundle of cores; this armor was provided “with a view to protecting the insulated conductors from the strains and chafing which had so seriously interfered with the chances of the previous line.” The completed cable weighed about seven tons to the mile. It was coiled into the hold of an old pontoon hulk, which was then taken in tow by two steamers. A third tug to stand by, and a small man-of-war{21} steamer to act as pilot, accompanied the laying expedition. The cable was landed at the foot of the South Foreland lighthouse and paid out toward Cape Sangatte, but the weather was less favorable than on the previous occasion; moreover, the weight of the cable—in the absence of efficient holding-back gear—caused it to run out too rapidly, notwithstanding the slight depth (some 30 fathoms) encountered. Added to this, the tugs drifted with the wind and tide. Thus when the vessels arrived within about a mile of the French coast no more cable was left on board, and a fresh length had to be procured and spliced on before the line was complete. This cable proved a lasting success: it underwent numerous and extensive repairs, and it was only quite recently that its abandonment took place.

      Other Early Cables.—The success of Crampton’s line gave considerable impetus to submarine telegraphy. Similar enterprises sprung up on all sides; but many failures occurred before these operations came to be regarded as ordinary industrial undertakings. In the course of the following year (1852) three unsuccessful attempts were made to establish telegraphic communication between England and Ireland. In the first—between Holyhead and Howth—the cable was not heavy enough to contend with the rough bottom, and strong currents and disturbances from anchors experienced in these waters; but this undertaking is remarkable as being the only instance in which an effort was made to do without any intermediate serving between the insulated conductor and the iron sheathing. In the second attempt—between Port Patrick (Scotland) and{22} Donaghadee (Ireland)—the cable consisted of a central copper conductor covered first with india-rubber, then with gutta-percha,


Скачать книгу