Американцы на Луне не были!. Юрий Мухин
диаметром колес, двигаясь с такой скоростью, поднимает пыль, но камней не отбрасывает.
Ю.И. МУХИН. И судя по этим словам, Назаров снова не понимает, о чем идет речь. Когда, по легенде, американцы доставили на Луну лунный автомобиль, то использовали его исключительно для того, чтобы лихо кататься по съемочному павильону – делали круги, наскакивали на камни, резко тормозили, т. е. делали все, чтобы показать зевакам, насколько хороша у Америки техника и насколько веселые и крутые они ребята. В момент пробуксовки их автомобиля из-под колес выбрасывался грунт, но вид его и дальность отброса от колес были точь-в-точь такими, как если бы на Земле на мокром пляже пробуксовывал автомобиль таких размеров и гоняющий с такой скоростью. На глаз (зная диаметр колеса) можно определить, что слипшийся песок подбрасывался где-то на метр и падал в метре от места выноса. Даже не обращая внимания на то, что пыль, как ей и полагается при наличии атмосферы, долго оседала, небольшой, чисто земной отброс грунта от колес «лунного автомобиля», видимо, и не понравился тем, кого Назаров поучает.
Я понимаю, что дело это безнадежное, но мой долг все же попробовать растолковать «серьезному ученому», что тут к чему.
При пробуксовке протекторы покрышки захватывают частицы почвы и бросают их под углом к поверхности со скоростью V. Эта скорость раскладывается на две составляющие: на скорость Vв, с которой частица поднимается вертикально вверх, и скорость с которой частица летит горизонтально. Обе эти скорости на Земле гасит сопротивление воздуха, а скорость Vв, кроме этого, гасит и сила притяжения к планете. Падение скорости и уменьшение расстояния полета частицы из-за сопротивления воздуха считать не будем, а просто учтем, что какие бы результаты по расстоянию мы ни получили, но на Луне расстояние, на которое отлетит от колеса частица, будет еще больше из-за отсутствия там атмосферы.
Скорость V, с которой частица вылетает из-под колеса, зависит от скорости, с которой поверхность покрышки проскальзывает относительно почвы. Скорость эта будет тем больше, чем легче автомобиль, а на Луне он будет легче в 6 раз. Но мы и эту разницу рассчитывать не будем, а загнем второй палец и заметим, что какое бы расчетное расстояние полета частицы мы ни получили, но на самом деле на Луне оно будет еще больше из-за более высокой скорости вылета частиц из-под колеса.
Вот теперь рассчитаем время, которое вылетевшая из-под колеса частица будет находиться в воздухе. Вертикально вверх на Земле и на Луне она будет лететь до тех пор, пока вертикальная составляющая ее кинетической энергии полностью не перейдет в ее потенциальную энергию. Кинетическая энергия равна половине произведения массы частицы на квадрат ее скорости, и нам в данном случае ее численное значение не требуется. Нам важно, что на Земле на похожих автомобилях ее хватает, чтобы поднять частицу на 1 м. С этой высоты потенциальная энергия частицы, равная произведению веса частицы на высоту ее над почвой, начнет разгонять частицу к почве. На Земле с высоты в 1 м частица упадет на почву через время, равное квадратному корню из удвоенной высоты, деленной на ускорение свободного падения (9,8 м/сек2).