John Muir: Wilderness Essays, Environmental Studies, Memoirs & Letters (Illustrated Edition). John Muir

John Muir: Wilderness Essays, Environmental Studies, Memoirs & Letters  (Illustrated Edition) - John Muir


Скачать книгу
majestic continuous forests of the south creates a very different impression. No tree of all the forest is more enduringly established in concordance with climate and soil. It grows heartily everywhere--on moraines, rocky ledges, along watercourses, and in the deep, moist alluvium of meadows, with a multitude of seedlings and saplings crowding up around the aged, seemingly abundantly able to maintain the forest in prime vigor. For every old storm-stricken tree, there is one or more in all the glory of prime; and for each of these many young trees and crowds of exuberant saplings. So that if all the trees of any section of the main Sequoia forest were ranged together according to age, a very promising curve would be presented, all the way up from last year's seedlings to giants, and with the young and middle-aged portion of the curve many times longer than the old portion. Even as far north as the Fresno, I counted 536 saplings and seedlings growing promisingly upon a piece of rough avalanche soil not exceeding two acres in area. This soil bed is about seven years old, and has been seeded almost simultaneously by pines, firs, Libocedrus, and Sequoia, presenting a simple and instructive illustration of the struggle for life among the rival species; and it was interesting to note that the conditions thus far affecting them have enabled the young Sequoias to gain a marked advantage.

      In every instance like the above I have observed that the seedling Sequoia is capable of growing on both drier and wetter soil than its rivals, but requires more sunshine than they; the latter fact being clearly shown wherever a Sugar Pine or fir is growing in close contact with a Sequoia of about equal age and size, and equally exposed to the sun; the branches of the latter in such cases are always less leafy. Toward the south, however, where the Sequoia becomes more exuberant and numerous, the rival trees become less so; and where they mix with Sequoias, they mostly grow up beneath them, like slender grasses among stalks of Indian corn. Upon a bed of sandy flood-soil I counted ninety-four Sequoias, from one to twelve feet high, on a patch of ground once occupied by four large Sugar Pines which lay crumbling beneath them,--an instance of conditions which have enabled Sequoias to crowd out the pines.

      I also noted eighty-six vigorous saplings upon a piece of fresh ground prepared for their reception by fire. Thus fire, the great destroyer of Sequoia, also furnishes bare virgin ground, one of the conditions essential for its growth from the seed. Fresh ground is, however, furnished in sufficient quantities for the constant renewal of the forests without fire, viz., by the fall of old trees. The soil is thus upturned and mellowed, and many trees are planted for every one that falls. Land-slips and floods also give rise to bare virgin ground; and a tree now and then owes its existence to a burrowing wolf or squirrel, but the most regular supply of fresh soil is furnished by the fall of aged trees.

      The climatic changes in progress in the Sierra, bearing on the tenure of tree life, are entirely misapprehended, especially as to the time and the means employed by Nature in effecting them. It is constantly asserted in a vague way that the Sierra was vastly wetter than now, and that the increasing drought will of itself extinguish Sequoia, leaving its ground to other trees supposed capable of flourishing in a drier climate. But that Sequoia can and does grow on as dry ground as any of its present rivals, is manifest in a thousand places. "Why, then," it will be asked, "are Sequoias always found in greatest abundance in well-watered places where streams are exceptionally abundant?" Simply because a growth of Sequoias creates those streams. The thirsty mountaineer knows well that in every Sequoia grove he will find running water, but it is a mistake to suppose that the water is the cause of the grove being there; on the contrary, the grove is the cause of the water being there. Drain off the water and the trees will remain, but cut off the trees, and the streams will vanish. Never was cause more completely mistaken for effect than in the case of these related phenomena of Sequoia woods and perennial streams, and I confess that at first I shared in the blunder.

      When attention is called to the method of Sequoia stream-making, it will be apprehended at once. The roots of this immense tree fill the ground, forming a thick sponge that absorbs and holds back the rains and melting snows, only allowing them to ooze and flow gently. Indeed, every fallen leaf and rootlet, as well as long clasping root, and prostrate trunk, may be regarded as a dam hoarding the bounty of storm-clouds, and dispensing it as blessings all through the summer, instead of allowing it to go headlong in short-lived floods. Evaporation is also checked by the dense foliage to a greater extent than by any other Sierra tree, and the air is entangled in masses and broad sheets that are quickly saturated; while thirsty winds are not allowed to go sponging and licking along the ground.

      So great is the retention of water in many places in the main belt, that bogs and meadows are created by the killing of the trees. A single trunk falling across a stream in the woods forms a dam 200 feet long, and from ten to thirty feet high, giving rise to a pond which kills the trees within its reach. These dead trees fall in turn, thus making a clearing, while sediments gradually accumulate changing the pond into a bog, or meadow, for a growth of carices and sphagnum. In some instances a series of small bogs or meadows rise above one another on a hillside, which are gradually merged into one another, forming sloping bogs, or meadows, which make striking features of Sequoia woods, and since all the trees that have fallen into them have been preserved, they contain records of the generations that have passed since they began to form.

      Since, then, it is a fact that thousands of Sequoias are growing thriftily on what is termed dry ground, and even clinging like mountain pines to rifts in granite precipies; and since it has also been shown that the extra moisture found in connection with the denser growths is an effect of their presence, instead of a cause of their presence, then the notions as to the former extension of the species and its near approach to extinction, based upon its supposed dependence on greater moisture, are seen to be erroneous.

      The decrease in the rain- and snowfall since the close of the glacial period in the Sierra is much less than is commonly guessed. The highest post-glacial watermarks are well preserved in all the upper river channels, and they are not greatly higher than the spring floodmarks of the present; showing conclusively that no extraordinary decrease has taken place in the volume of the upper tributaries of post-glacial Sierra streams since they came into existence. But in the mean time, eliminating all this complicated question of climatic change, the plain fact remains that the present rain- and snowfall is abundantly sufficient for the luxuriant growth of Sequoia forests. Indeed, all my observations tend to show that in a prolonged drought the Sugar Pines and firs would perish before the Sequoia, not alone because of the greater longevity of individual trees, but because the species can endure more drought, and make the most of whatever moisture falls.

      Again, if the restriction and irregular distribution of the species be interpreted as a result of the desiccation of the range, then instead of increasing as it does in individuals toward the south where the rainfall is less, it should diminish.

      If, then, the peculiar distribution of Sequoia has not been governed by superior conditions of soil as to fertility or moisture, by what has it been governed?

      In the course of my studies I observed that the northern groves, the only ones I was at first acquainted with, were located on just those portions of the general forest soil-belt that were first laid bare toward the close of the glacial period when the ice-sheet began to break up into individual glaciers. And while searching the wide basin of the San Joaquin, and trying to account for the absence of Sequoia where every condition seemed favorable for its growth, it occurred to me that this remarkable gap in the Sequoia belt is located exactly in the basin of the vast ancient mer de glace of the San Joaquin and King's River basins, which poured its frozen floods to the plain, fed by the snows that fell on more than fifty miles of the summit. I then perceived that the next great gap in the belt to the northward, forty miles wide, extending between the Calaveras and Tuolumne groves, occurs in the basin of the great ancient mer de glace of the Tuolumne and Stanislaus basins, and that the smaller gap between the Merced and Mariposa groves occurs in the basin of the smaller glacier of the Merced. The wider the ancient glacier, the wider the corresponding gap in the Sequoia belt.

      Finally, pursuing my investigations across the basins of the Kaweah and Tule, I discovered that the Sequoia belt attained its greatest development just where, owing to the topographical peculiarities of the region, the ground had been most perfectly protected from the main ice-rivers that continued to pour past from the summit fountains long after the smaller local glaciers had been melted.

      Taking


Скачать книгу