Fragments of Earth Lore: Sketches & Addresses Geological and Geographical. Geikie James
were folded, and which, as we have seen, had entirely disappeared before the younger rocks of the district were accumulated? Well, it is obvious that the missing strata must have been of later formation than the bottom beds, and it is equally evident that they must have been of much more ancient date than the igneous rocks of the Cheviot Hills. Now, as we shall afterwards see, these igneous rocks belong to the Old Red Sandstone age, that is to say, to the age that succeeded the Silurian. How is it then, if the bottom beds be really of Silurian and the igneous rocks of Old Red Sandstone age, that a gap is said to exist between them? The explanation of this apparent contradiction is not far to seek. When we compare the fossils that occur in the Silurian strata of the Cheviot Hills and the districts to the west, with the organic remains disinterred from similar strata elsewhere, as in Wales for example, we find that the bottom beds of the Cheviots were in all probability accumulated at approximately the same time as certain strata that occur in the middle division of the Upper Silurian. In Wales and in Cumberland the strata that approximate in age to the Silurian of the Cheviots are covered by younger strata belonging to the same formation which reach a thickness of several thousand feet. It may quite well be, therefore, that the succession of Silurian strata in the Cheviots was at one time more complete than it is now. The upper portions of the formation which are so well developed in Wales and Cumberland, and which are likewise represented to a small extent in Scotland, had in all probability their equivalents in what are our border districts. In other words, there are good grounds for believing that the existing Silurian rocks of the Cheviots were in times preceding the Old Red Sandstone age covered with younger strata belonging to the same great system. The missing Silurian strata of the Cheviots may have attained a thickness of several thousand feet, and underneath such a mass of solid rock the lower-lying strata might well have been consolidated and subsequently squeezed into folds.
We now pass on to consider the next chapter in the geological history of the Cheviot Hills. As we proceed in our investigations it will be noticed that the evidence becomes more abundant, and we are thus enabled to build up the story of the past with more confidence, and with fuller details. For it is with geological history as with human records—the further back we go in time the scantier do the facts become. The rocks upon which Nature writes her own history are palimpsests, on which the later writing is ever the most easily deciphered. Nay, she cannot compile her newer records without first destroying some of those compiled in earlier times. The sediments accumulating in modern lake and sea are but the materials derived from the degradation of the rocks we see around us, just as these in like manner have originated from the demolition of yet older strata. Thus the further we trace back the history of our earth, the more fragmentary must we expect the evidence to be; and conversely, the nearer we approach to the present condition of things the more abundant and satisfactory must the records become. Accordingly, we find that the igneous rocks of the Cheviot Hills tell us considerably more than the ancient Silurian deposits upon which they rest. The surface of the latter appears to be somewhat irregular underneath the igneous rocks, showing that hills and valleys, or an undulating table-land, existed in the Cheviot district prior to the appearance of the younger formation. But before we attempt to summarise the history of that formation, it is necessary to give some description, however short, of the rocks that compose it.
These consist chiefly of numerous varieties of a rock called porphyrite by geologists, piled in more or less irregular beds, one on top of another, in a somewhat confused manner. The colour of the freshly fractured rocks is very variable, being usually some shade of blue or purple; but pink, red, brown, greenish, and dark grey or almost black varieties also occur. Some of the rocks are finely crystalline; others, again, are much coarser, while many are compact, or nearly so, a lens being required to detect a crystalline texture. The mineral called felspar is usually scattered more or less abundantly through the matrix or base, which itself is composed principally of felspathic materials. Besides distinct scattered crystals of felspar, other minerals often occur in a similar manner; mica and hornblende being the commonest. Occasionally the rocks contain numerous circular, oval, or flattened cavities, which are sometimes so abundant as to give the appearance of a kind of coarse slag to the porphyrite. These little cavities, however, are usually filled up with mineral matter—such as calcspar, calcedony, jasper, quartz, etc. Sometimes also cracks, crannies, and crevices of some size have been sealed up with similar minerals. Now nearly all these appearances are specially characteristic of rocks which have at one time been in a state of igneous fusion; nor can there be any doubt that the Cheviot porphyrites are merely solidified lava-beds, which have been poured out from the bowels of the earth. In modern lavas we may notice not only a crystalline texture, but frequently also we observe those in our porphyrites. Such cavities are due to the expansive force of the vapours imprisoned in the molten mass at the time of eruption. They form chiefly towards the upper surface of a lava stream, and are often drawn out or flattened in the direction in which the lava flows. Thus a stream of lava, as it creeps on its way, becomes slaggy and scoriaceous or cindery above and in front, and as the molten mass within continues to flow, the slags and cinders that cover its face tumble down before it, and form the pavement upon which the stream advances. In this way slags and cinders become incorporated with the bottom of the lava, and hence it is that so many volcanic rocks are scoriaceous, as well below as above. The vapours which produce the cavities usually contain minerals in solution, and these, as the lava cools, are frequently deposited, partially filling up the vesicles, so as to form what are called geodes. But many of the cavities have been filled in another way—by the subsequent infiltration of water carrying mineral matter in solution. And since we know that all rocks are so permeated by water, it is clear that the cavities may have received their contents during many successive periods, after the solidification of the rock in which they occur. It is in this manner that the jaspers, calcedony, and beautiful agates of commerce have been formed. Rocks abundantly charged with cavities are said to be vesicular, and when the vesicles are filled with mineral matter, then the mass becomes, in geological language, amygdaloidal, from the almond-like shape assumed by the flattened vesicles.
Now all the appearances described above, and many others hardly less characteristic of true lavas, are to be met with amongst those porphyrites which, as I have said, form the major portion of the Cheviot Hills. From the valley of the Oxnam, east by Cessford, Morebattle, and Hoselaw, and south by Edgerston, Letham, Browndeanlaws, and Hindhope, the porphyrites extend over the whole area, sweeping north-east across the border on to the heights above the Rivers Glen and Till. In the hills at Hindhope we notice a good display of the oldest beds of the series. At the base occurs a very peculiar rock resting upon the Silurian, and thus forming the foundation of the porphyrites. It varies in colour, being pink, grey, green, red, brown, or variously mottled. Sometimes it is fine-grained and gritty, like a soft, coarse-grained sandstone; at other times it is not unlike a granular porphyrite; but when most typically developed it consists of a kind of coarse angular gravel embedded in a gritty matrix. The stones sometimes show distinct traces of arrangement into layers; but they are often heaped rudely together with little or no stratification at all. They consist chiefly of fragments of porphyrites; but bits of Silurian rocks also occur amongst them. This peculiar deposit unquestionably answers to the heaps of dust, sand, stones, and bombs which are shot out of modern volcanoes; it is a true tuff—that is, a collection of loose volcanic ejectamenta.
Upon what kind of surface did it fall? Long before the eruptions began, the Silurian rocks had been sculptured into hills and valleys by the action chiefly of the sub-aërial forces, and it was upon these hills and in these valleys that the igneous materials accumulated. It is difficult to say, however, whether at this period the Cheviot district was above or under water. The traces of bedding in the tuff would seem to indicate the assorting power of water; but the evidence is too slight to found upon, because we know that in modern eruptions, loose ejectamenta frequently assume a kind of irregular bedded arrangement. For aught we can say to the contrary, therefore, dry land may have extended across what is now southern Scotland and northern England when the first rumblings of volcanic disturbance shook the Cheviot area. Be that as it may, we know that the volcanic outbursts began in those old times, as they almost invariably commence now, by a discharge of sand, small stones, blocks, and cinders. These, we may infer, covered a wide area round the centre of dispersion—the chief focus of eruption being probably in the vicinity of the big Cheviot, where a mass of granite seems to occupy the core or deep-seated portion of the old volcanic centre. The locality where the tuff occurs