Fragments of Earth Lore: Sketches & Addresses Geological and Geographical. Geikie James

Fragments of Earth Lore: Sketches & Addresses Geological and Geographical - Geikie James


Скачать книгу
is from south-west to north-east, a direction which continues to hold good until the lower reaches of the Tweed are approached, when, as we have just mentioned, they begin to turn more and more to the east. Thus it becomes evident that the denuding agent, whatever it was, that gave rise to these ridges and scratched rock-surfaces must have pressed outwards from all the dominant watersheds, and, sweeping down through the great undulating strath that lies between the Cheviots and the Lammermuirs, must have gradually turned away to the east and south as it rounded the northern spurs of the former range, so as to pass south-east over the contiguous maritime districts of Northumberland.

      A few words now as to the character of the superficial deposits which enter so largely into the composition of the long parallel banks and ridges in the low-grounds of Roxburghshire, Berwickshire, and the northern part of Northumberland. The most conspicuous and noteworthy deposit is a hard tough tenacious clay, which is always more or less well-charged with blunted and sub-angular stones and boulders, scattered pell-mell through the mass. This clay is as a rule quite unstratified—it shows no lines of bedding, and although here and there it contains irregular patches and beds of gravel and sand, yet it evidently does not owe its origin to the action of water. Its colour in the upper part of Teviotdale and the Cheviots is generally a drab-brown, or pale grey and sometimes yellow, while here and there, as in the upper reaches of the Jed valley, it is a dark dingy bluish grey. In the lower parts of Teviotdale and in the Tweed district it is generally red or reddish brown. The stones in the clay have all been derived from the rocks of the region in which it occurs. Thus in Teviotdale we find that in the higher reaches of the dale which are Silurian the stones and boulders consist of various kinds of greywacké, etc. In the lower reaches, however, when we pass into the Red Sandstone area, we note that the clay begins to contain fragments of red sandstone, while the clay itself takes on a reddish tinge, until we get down to the vale of the Tweed, where not only is the clay very decidedly red, but its sandstone boulders also are very numerous. The same appearances present themselves in passing outwards from the Cheviots. At first the clay contains only stones that have been derived from the upper parts of the hills, but by-and-by, as we near the low-grounds, other kinds begin to make their appearance, so that by the time we reach the Tweed we may obtain from the clay specimens of every kind of rock that occurs within the drainage-area of the Teviot and the lower reaches of the River Tweed.

      Look at the stones, and you shall observe that all the harder and finer-grained specimens are well-smoothed and covered with striæ or scratches, the best marked of which run parallel with the longer axis of each stone and boulder. These scratches are evidently very similar to those markings that cover the surface of the underlying solid rock, and we may feel sure, therefore, that the denuding agent which smoothed and scratched the solid rocks had also something to do with the stones and boulders of the clay.

      Underneath the stony clay, or Till, as it is called, we find here and there certain old river gravels. We know that these gravels are river-formations, because not only do they lie at the bottom of the river-valleys, but the stones, we can see, have been arranged by water running in one constant direction, and that direction is always down the valley in which the gravels chance to occur. Frequently, however, there is no trace of such underlying gravels, but the till rests directly upon the solid rocks.

      Now what do all these appearances mean? It is clear that there is no natural agent in this country engaged in rounding and scratching the rocks, or in accumulating a stony clay like till. In alpine regions, however, we know that glaciers, as they slowly creep down their valleys, grind and polish and scratch the rocks over which they pass, and that underneath the moving ice one may detect smoothed and striated stones precisely resembling those that occur in till. Frost in such alpine regions splits up the rocks of the cliffs and mountain-slopes that overlook a glacier, and immense masses of angular stones and débris, thus loosened, roll down and accumulate along the flanks of the ice-streams. Eventually such accumulations are borne slowly down the valley upon the back of the glacier, and are dropped at last over the terminal front of the ice, where they become intermingled with the stones and rubbish, which are pushed or washed out from underneath the ice. These heaps and masses of angular débris and stones are called “moraines,” and one can see that in Switzerland the glaciers must at some time have been much larger, for ancient moraines occur far down in the low-grounds of that country—the glaciers being now confined to the uppermost reaches of the deep mountain-valleys. Moreover, we may note how the mountain-slopes overlooking the present puny glaciers have been rubbed by ice up to a height of sometimes a thousand feet and more above the level of the existing ice-streams. Now since the aspect presented by the glaciated rock-surfaces of Switzerland is exactly paralleled by the rounded and smoothed rocks of Scotland, there can be no doubt that the latter have had a similar origin. Again, we find throughout the low-grounds of Switzerland a deposit of till precisely resembling that which is so well developed in Teviotdale and the valley of the Tweed. And as there can be no doubt that the Swiss till has been produced by the action of glacier ice, we are compelled to believe the same of the till in Scotland.

      Let us further note that in the deep mountain-valleys of Switzerland the glacial deposits consist for the most part of coarse morainic débris—of such materials, in short, as the terminal moraines of existing glaciers are mainly composed. Not infrequently this morainic débris has been more or less acted upon by the rivers that escape from the glaciers, and the angular stones have been rounded and arranged in bedded masses. It is only when we get out of the mountain-valleys and approach the low-grounds that the till, or stony clay, begins to appear abundantly. The same phenomena characterise the Cheviot district. In the upper reaches of the mountain-valleys at the heads of the Teviot, the Kale, the Bowmont, etc., either till does not occur or it is thin and often concealed below masses of rude morainic débris and gravel. Out in the low-grounds, however, till, as we have already remarked, is the most conspicuous of all the superficial deposits. From these facts it may be inferred that till indicates the former presence of great confluent glaciers, while morainic débris in hill-valleys points to the action of comparatively small local and isolated glaciers.

      What, then, are the general conclusions which may be derived from a study of the rock-ridges, flutings, and striæ, and the till of the Cheviot district? Clearly this: that the whole country has at one time been deeply buried under glacier ice. The evidence shows us that the broad strath stretching between the Lammermuirs and the Cheviots must have been filled to overflowing with a great mass of ice that descended from the uplands of Peebles and Selkirk and the broad-topped heights that overlook the sources of the Teviot. The Cheviots appear to have been quite buried underneath this wide sea of ice, and so likewise were the Lammermuirs. At the same time, as we know, all Scotland was similarly enveloped in a vast sheet of snow and ice, which streamed out from the main watersheds of the country, and followed the lines of the chief straths—that is to say, the general slope of the ground. The track of the ice in the Cheviot district is very distinctly marked. In Teviotdale it followed the trend of the valley, and, grinding along the outcrop of the Silurian strata, deepened old hollows and scooped out new ones in the soft shaly beds, while the intervening harder strata, which offered greater resistance to the denuding action of the ice, did not wear so easily, and so were rounded off, and formed a series of ridges running parallel to the eroded hollows. The stones and rubbish, dragged along underneath the ice, necessarily increased as the glacier mass crept on its way. The rocks were scratched and grooved by the stones that were forced over them, and the polishing was completed by the finer sand and clay which resulted from the grinding process. Wherever a rock projected there would be a tendency for the stones and clay and sand to gather behind it. One may notice the same kind of action upon the bed of a stream, where the sediment tends to collect in the rear of prominent stones and boulders. And we can hardly fail to have observed further that the sediment of a river often arranges itself under the action of the current in long banks, which run parallel to the course of the water. Underneath the ice-sheet the stones, sand, and clay behaved in the same way. Behind projecting rocks in sheltered nooks and hollows, they accumulated, while in places exposed to the full sweep of the ice-stream they were piled up and drawn out into long parallel banks and ridges, the trend of which coincided with that of the ice-flow. The presence of confused and irregular patches and lenticular beds of sand, clay, and gravel in the till is not difficult to understand when we know that there is always more or less water flowing on underneath a glacier. Such streams must assort the débris, and


Скачать книгу