Experiments on Animals. Stephen Paget
claim made a few years ago to this discovery, on behalf of Cæsalpinus, by his countrymen, was not successful. But it is probable that Realdus (1516–1557) did understand the passage of blood through the lungs, but not the general circulation. He says:—
"The blood is carried through the pulmonary artery to the lung, and there is attenuated; thence, mixed with air, it is carried through the pulmonary vein to the left ventricle of the heart: which thing no man hitherto has noted or left on record, though it is most worthy of the observation of all men. … And this is as true as truth itself; for if you will look, not only in the dead body but also in the living animal, you will always find this pulmonary vein full of blood, which assuredly it would not be if it were designed only for air and vapours. … Verily, I pray you, O candid reader, studious of authority, but more studious of truth, to make experiment on animals. You will find the pulmonary vein full of blood, not air or fuligo, as these men call it, God help them. Only there is no pulsation in the vein." (De Re Anatomicâ, Venice, 1559.)
Fabricius ab Aquapendente, Harvey's master at Padua, published his work on the valves of the veins—De Venarum Ostiolis—in 1603. He did not discover them. Sylvius speaks of them in his Isagoge (Venice, 1555), and they were known to Amatus (1552), and even to Theodoretus, Bishop of Syria, who lived, as John Hunter said of Sennertus, "the Lord knows how long ago." But Fabricius studied them most carefully; and in anatomy he left nothing more to be said about them. In physiology, his work was of little value; for he held that they were designed "to retard the blood in some measure, lest it should run pell-mell into the feet, hands, and fingers, there to be impacted": they were to prevent distension of the veins, and to ensure the due nourishment of all parts of the body. It is true that he compared them to the locks or weirs of a river, but he understood neither the course nor the force of the blood: as Harvey said of him, "The man who discovered these valves did not understand their right use; neither did they who came after him"—Harum valvularum usum rectum inventor non est assecutus, nec alii addiderunt; non est enim ne pondere deorsum sanguis in inferiora totus ruat; sunt namque in jugularibus deorsum spectantes, et sanguinem sursum ferri prohibentes. Men had no idea of the rapidity and volume of the circulation; they thought of a sort of Stygian tide, oozing this way or that way in the vessels—Cæsalpinus was of opinion that it went one way in the daytime and another at night—nor did they see that the pulmonary circulation and the general circulation are one system, the same blood covering the whole course. The work that they did in anatomy was magnificent; Vesalius, and the other great anatomists of his time, are unsurpassed. But physiology had been hindered for ages by fantastic imaginings, and the facts of the circulation of the blood were almost as far from their interpretation in the sixteenth century as they had been in the time of Galen.
II.—Harvey (1578–1657)
The De Motu Cordis et Sanguinis in Animalibus was published at Frankfurt in 1628. And it begins with these words: Cum multis vivorum dissectionibus, uti ad manum dabantur:—
"When by many dissections of living animals, as they came to hand, I first gave myself to observing how I might discover with my own eyes, and not from books and the writings of other men, the use and purpose of the movement of the heart in animals, forthwith I found the matter hard indeed, and full of difficulty: so that I began to think, with Frascatorius, that the movement of the heart was known to God alone. For I could not distinguish aright either the nature of its systole and diastole, or when or where dilatation and contraction took place; and this because of the swiftness of the movement, which in many animals in the twinkling of an eye, like a flash of lightning, revealed itself to sight and then was gone; so that I came to believe that I saw systole and diastole now this way now the other, and movements now apart and now together. Wherefore my mind wavered; I had nothing assured to me, whether decided by me or taken from other men: and I did not wonder that Andreas Laurentius had written that the movement of the heart was what the ebb and flow of the Euripus had been to Aristotle.
"At last, having daily used greater disquisition and diligence, by frequent examination of many and various living animals—multa frequenter et varia animalia viva introspiciendo—and many observations put together, I came to believe that I had succeeded, and had escaped and got out of this labyrinth, and therewith had discovered what I desired, the movement and use of the heart and the arteries. And from that time, not only to my friends, but also in public in my anatomical lectures, after the manner of the Academy, I did not fear to set forth my opinion in this matter."
It is plain, from Harvey's own words, that he gives to experiments on animals a foremost place among his methods of work. Take only the headings of his first four chapters:—
i. Causæ, quibus ad scribendum auctor permotus fuerit. ii. Ex vivorum dissectione, qualis fit cordis motus. iii. Arteriarum motus qualis, ex vivorum dissectione. iv. Motus cordis et auricularum qualis, ex vivorum dissectione.
He thrusts it on us, he puts it in the foreground. Read the end of his Preface:—
"Therefore, from these and many more things of the kind, it is plain (since what has been said by men before me, of the movement and use of the heart and arteries, appears inconsistent or obscure or impossible when one carefully considers it) that we shall do well to look deeper into the matter; to observe the movements of the arteries and the heart, not only in man, but in all animals that have hearts; and by frequent dissection of living animals, and much use of our own eyes, to discern and investigate the truth—vivorum dissectione frequenti, multâque autopsiâ, veritatem discernere et investigare."
Finally, take the famous passage in the eighth chapter, De copiâ sanguinis transeuntis per cor e venis in arterias, et de circulari motu sanguinis:—
"And now, as for the great quantity and forward movement of this blood on its way, when I shall have said what things remain to be said—though they are well worth considering, yet they are so new and strange that I not only fear harm from the envy of certain men, but am afraid lest I make all men my enemies; so does custom, or a doctrine once imbibed and fixed down by deep roots, like second nature, hold good among all men, and reverence for antiquity constrains them. Be that as it may, the die is cast now: my hope is in the love of truth, and the candour of learned minds. I bethought me how great was the quantity of this blood. Both from the dissection of living animals for the sake of experiment, with opening of the arteries, with observations manifold; and from the symmetry of the size of the ventricles, and of the vessels entering and leaving the heart—because Nature, doing nothing in vain, cannot in vain have given such size to these vessels above the rest—and from the harmonious and happy device of the valves and fibres, and all other fabric of the heart; and from many other things—when I had again and again carefully considered it all, and had turned it over in my mind many times—I mean the great quantity of the blood passing through, and the swiftness of its passage—and I did not see how the juices of the food in the stomach could help the veins from being emptied and drained dry, and the arteries contrariwise from being ruptured by the excessive flow of blood into them, unless blood were always getting round from the arteries into the veins, and so back to the right ventricle—I began to think to myself whether the blood had a certain movement, as in a circle—cœpi egomet mecum cogitare, an motionem quandam quasi in circulo haberet—which afterward I found was true."
This vehement passage, which goes with a rush like that of the blood itself, is a good example of the width and depth of Harvey's work—how he used all methods that were open to him. He lived to fourscore years; "an old man," he says, "far advanced in years, and occupied with other cares": and, near the end of his life, he told the Hon. Robert Boyle that the arrangement of the valves of the veins had given him his first idea of the circulation of the blood:—
"I remember that when I asked our famous Harvey, in the only discourse I had with him, which was but a while before he died, what were the things which induced him to think of the circulation of the blood, he answered me that when he took notice that the valves in the veins of so many parts of the body were so placed that they gave free passage of the blood towards the heart, but opposed the passage of the venal blood the contrary way, he was invited to imagine that so provident a cause as Nature had not so placed so many valves without design; and no design seemed