Pyrometry: A Practical Treatise on the Measurement of High Temperatures. Charles R. Darling
measurements is often a failure in the workshop, and all possibilities of this kind should be considered before deciding upon the type of pyrometer to be used.
CHAPTER II
STANDARDS OF TEMPERATURE
The Absolute or Thermodynamic Scale of Temperatures.—All practical instruments for measuring temperatures are based on some progressive physical change on the part of a substance or substances. In a mercury thermometer, the alteration in the volume of the liquid is used as a measure of hotness; and similarly the change in volume or pressure on the part of a gas, or the variation in resistance to electricity shown by a metal, and many other physical changes, may be employed for this purpose. In connection with the measurement of high temperatures, many different physical principles are relied upon in the various instruments in use, and it is of the greatest importance that all should read alike under the same conditions. This result would not be attained if each instrument were judged by its own performances. In the case of a mercury thermometer, for example, we may indicate the amount of expansion between the temperatures of ice and steam at 76 centimetres pressure, representing 100° Centigrade, by a; and then assume that an expansion of 2a will signify a temperature of 200°, and so on in proportion. Similarly, we may find the increase in resistance manifested by platinum between the same two fixed points, and indicate it by r, and then assume that an increase of 2r will correspond to 200°. If now we compare the two instruments, we find that they do not agree, for on placing both in a space in which the platinum instrument registered 200°, the mercury thermometer would show 203°. A similar, or even greater, discrepancy would be observed if other physical changes were relied upon to furnish temperature scales on these lines, and it is therefore highly desirable that a standard independent of any physical property of matter should be used. Such a standard is to be found in the thermodynamic scale of temperatures, originally suggested by Lord Kelvin. This scale is based upon the conversion of heat into work in a heat engine, a process which is independent of the nature of the medium used. A temperature scale founded on this conversion is therefore not connected with any physical property of matter, and furnishes a standard of reference to which all practical appliances for measuring temperatures may be compared.[1] When readings are expressed in terms of this scale, it is customary to use the letter K in conjunction with the number: thus 850° K would mean 850 degrees on the thermodynamic scale.
When existing instruments are compared with this standard, it is found that a scale based on the assumption that the volume of a gas free to expand, or the pressure of a confined gas, increases directly as the temperature is in close agreement with the thermodynamic scale. It may be proved that if the gas employed were “perfect,” a scale in exact conformity with the standard described would be secured; and gases which approach nearest in properties to a perfect gas, such as hydrogen, nitrogen, and air, may therefore be used to produce a practical standard, the indications of which are nearly identical with the thermodynamic scale. If any other physical change be chosen, such as the expansion of a solid, or the increase in resistance of a metal, and a temperature scale be based on the supposition that the change in question varies directly as the temperature, the results obtained would differ considerably from the absolute standard. For this reason the practical standard of temperature now universally adopted is an instrument based on the properties of a suitable gas.
The Constant Volume Gas Thermometer.—In applying the properties of a gas to practical temperature measurement, we may devise some means of determining the increase in volume when the gas is allowed to expand, or the increase in pressure of a confined gas may be observed. The latter procedure is more convenient in practice, and the instrument used for this purpose is known as the constant volume gas thermometer, one form of which is shown in fig. 1. The gas is enclosed in a bulb B, connected to a tube bent into a parallel branch, into the bend of which is sealed a tap C, furnished with a drying cup. The extremity of the parallel branch is connected to a piece of flexible tubing T, which communicates with a mercury cistern which may be moved over a scale, the rod G serving as a guide. In using this instrument the bulb B is immersed in ice, and the tap C opened. When the temperature has fallen to 0° C., the mercury is brought to the mark A by adjusting the cistern, and the tap C then closed. The bulb B is now placed in the space or medium of which the temperature is to be determined, and expansion prevented by raising the cistern so as to keep the mercury at A. When steady, the height of the mercury in the cistern above the level of A is read off, and furnishes a clue to the temperature of B. If the coefficient of pressure of the gas used (in this case, air) be known, the temperature may be calculated from the equation
P1 = P0(1 + bt),
where P1 is the pressure at t°; P0 the pressure at 0°; and b the coefficient of pressure; that is, the increase in unit pressure at 0° for a rise in temperature of 1°. Thus if P0 = 76 cms.; b = 0·00367; height of mercury in cistern above A = 55·8 cms.; then
P1 = (76 + 55·8) = 131·8 cms.,
and by inserting these values in the above equation t is found to be 200°. In the instrument described, P0 is equal to the height of the barometer, since the tap C is open whilst the bulb is immersed in ice. The coefficient of pressure may be determined by placing the bulb in steam at a known temperature, and noting the increased pressure. In the equation given, P1, P0, and t are then known, and the value of b may be calculated.
Fig. 1.—Constant Volume Air Thermometer.
In using this instrument for exact determinations of temperature, allowance must be made for the expansion of the bulb, which causes a lower pressure to be registered than would be noted if the bulb were non-expansive. Again, the gas in the connecting tube is not at the same temperature as that in the bulb; an error which may be practically eliminated by making the bulb large and the bore of the tube small. The temperature of the mercury column must also be allowed for, as the density varies with the temperature. When the various corrections have been made, readings of great accuracy may be secured.
When applied to the measurement of high temperatures, the bulb must be made of a more infusible material than glass. Gold, porcelain, platinum, and quartz have been used by different investigators, but the most reliable material for temperatures exceeding 900° C. has been found to be an alloy of platinum with 20 per cent. of rhodium. The most suitable gas to use inside the bulb is nitrogen, which is chemically inert towards the materials of the bulb, and is not absorbed by the metals mechanically. When measuring high temperatures with this instrument, a considerable pressure, amounting to 1 atmosphere for every increase of 273 degrees above the ice point, is requisite to prevent expansion of the nitrogen; and this pressure tends to distort the bulb and so to falsify the indications. This trouble has been overcome by Day, who surrounded the bulb by a second larger bulb, and forced air or nitrogen into the intervening space until the pressure on the exterior of the thermometer bulb was equal to that prevailing in the interior. Even then it was not found possible to secure higher readings than 1550° C., as the bulb commenced to alter in shape owing to the softening of the material. This temperature represents the highest yet measured on the gas scale; but by using a more refractory material, such as fused zirconia, it may be found possible to extend this range to 2000° C. or more. Experiments in this direction are very desirable, in order that high-reading pyrometers may be checked directly against the gas scale.
Fixed Points for Calibration of Pyrometers.—It is evident that the gas thermometer is totally unsuited for use in workshops or laboratories when a rapid determination of a high temperature is required. Its function is to establish fixed points or temperature standards, by means of which other instruments,