Identification of the Larger Fungi. Roy Watling

Identification of the Larger Fungi - Roy Watling


Скачать книгу
rough, can give much more information than many score words.

      Cut one fruit-body, longitudinally down with a razor or scalpel or a sharp knife if the fruit-body is woody, and sketch the cut surfaces, fig. 1A-B. These sketches and the rest of the collection notes should be made such that identification and future comparisons can be achieved. Thus always note the characters in the same order for each description. A table of the important characters is provided here, but this is meant as a guide not as a questionnaire. The attachment of the gills, pores or teeth to the fruit-bodies when once the fungus is in section should be always noted (see p. 20).

      The spore-print when complete should be allowed to dry under normal conditions and then the spore-mass scraped together into a small pile. A microscope cover-slip should be placed on the top of the pile and lightly pressed down. The colour of the spore-print (or deposit) can then be compared with a standard colour chart and the spores making up the print examined in water under a microscope.

       Table of Contents

      When one is more experienced with fungi it will be found necessary to carry out many microscopic observations, but when commencing the study it is necessary only to have an ordinary microscope; a calibrated eyepiece-micrometer is an advantage as is an oil-immersion lens. An examination of the spores is always necessary; the examination of features such as the sterile cells on the gill and stem, etc., varies with the fungus under observation. Spores should if at all possible be taken from a spore-print and mounted on a microscope slide, either in water or in a dilute aqueous solution of household ammonia. Although for mycologists it is often necessary to measure spores to within a 12 micron (µm) this book has been so arranged that one only really has to distinguish between a spore which is small (up to 5 µm), medium (5–10 µm), long (10–15 µm), or large if globose and very long (if over 15 µm); this is not strictly accurate, but serves the purpose for an introductory text. It is important to describe the character of the spore, i.e. ornamentations, whether a hole (germ-pore) is present at one end and/or a beak (apiculus) at the other (fig. 5). With white or pale coloured spores it is useful to stain either the spore or the surrounding liquid with a dye—10% cotton blue solution is admirable, or a solution of 1·5 g iodine in 100 ml of an aqueous mixture containing 5 g of potassium iodine and 100 g of chloral hydrate. Both these dyes must be accurately made up if the study of the fungi is to be taken at all seriously; because some of the chemicals used above are not normally required by students, a chemist must make up the reagents for you. Often the spores turn entirely or partially blue-black or pale blue or purplish red in the iodine solution—a useful character.

      Larger illustration

      Fig. 1. Dissection of a toadstool as recommended by the author. For explanation see text.

      Material in good condition is always required and one of the first things the student needs to do is train himself to collect sufficient material in good condition. The steps by which all the structures of the fungus used in the text can be observed are outlined below:—

      Fig. 1 shows the cuts required to furnish suitable sections in order to observe the various structures and patterns of tissue which are important.

      1. Carefully place the longitudinal section (AB) of the fruit-body which has been sketched gill-face down under a low power or dissecting microscope. Hairs or gluten on the cap, if present, will be made visible by focusing up and down (figs. 2 and 3A) and/or those on the stem (fig. 3B). When any part of the cut fruit-body is not being examined retain it in a chamber containing damp paper or moist moss; this will assist the cells to retain their turgidity, for they frequently collapse on drying and are difficult to observe except after performing often lengthy and special techniques.

      If only one fruit-body is available, then cut along CD and mount in a tin box on a slide in order to obtain a spore-print (otherwise see paragraph 6).

      2. Cut off a complete gill (E) and quickly mount on a dry slide. Under the low power of a microscope, the cystidia on the gill-margin will be visible (fig. 4); it will be seen whether the spores are arranged in a particular pattern (fig. 5) and whether the basidia are 2-spored or 4-spored. In white-spored toadstools it is difficult sometimes to determine whether the basidia are 2- or 4-spored so one must confirm the observations by other techniques.

      

      Larger illustration

      A section of the gill accompanied by a small piece of cap-tissue, as in E, will confirm the presence or absence of noticeable cystidia (or hairs) on the cap. Now mount the section bounded by FG and HI in a drop of water containing either a drop of washing-up liquid and/or glycerine; the soapy liquid helps to expel any water which may tend to cling to the gill-margin amongst the cystidia and the glycerine stops the mount from drying out whilst further sections for comparison are cut and examined. It is at this time that the structure of the outermost layer of the cap can be examined, e.g. whether it is made up of a turf-like structure; the presence or absence of cystidia on the cap can be also confirmed (fig. 7A-C). It is frequently necessary to tap the mount in order to spread the tissue slightly and expose the elements; this can be done very efficiently by light pressure from the end of a pencil to which an eraser is attached. Cut off along line JK to eliminate marginal cystidia from confusing the picture and mount both pieces separately.

      Mount on a dry slide with the plane through PQ face down on the slide and observe under a low magnification, to assess whether cystidia on the gill-face are present or absent, and if present their general shape and whether numerous or infrequent (fig. 8).

      Mount in water/washing-up mixture as outlined above and tap gently with the rubber attached to the end of a pencil; evenly distributed pressure should be given. If the gills appear to be too close then rotate the rubber a little whilst pressing in order to spread the tissue.

      4. Using a low power of a microscope and looking down into the plane RS of the unmodified block M or a similar block, one obtains by this simple technique a very accurate idea as to the structure of the trama of the gill (fig. 9). The organisation of this tissue is very important in classification, some groups of toadstools having what has been described as regular trama (fig. 9C), others irregular (fig. 9D), inverse (fig. 9B) or divergent (fig.


Скачать книгу