Myths and Marvels of Astronomy. Richard Anthony Proctor
from any other, for their unit of length. But if they made observations in or near latitude 30° north on the supposition that the earth is a globe, their probable error would exceed the difference even between the earth's polar and equatorial diameters. Both differences are largely exceeded by the range of difference among the estimates of the actual length of the sacred cubit, supposed to have contained twenty-five of these smaller units. And, again, the length of the pyramid base-side, on which Smyth bases his own estimate of the sacred cubit, has been variously estimated, the largest measure being 9168 inches, and the lowest 9110 inches. The fundamental theory of the pyramidalists, that the sacred cubit was exactly one 20,000,000th part of the earth's polar diameter, and that the side of the base contained as many cubits and parts of a cubit as there are days and parts of a day in the tropical year (or year of seasons), requires that the length of the side should be 9140 inches, lying between the limits indicated, but still so widely removed from either that it would appear very unsafe to base a theory on the supposition that the exact length is or was 9140 inches. If the measures 9168 inches and 9110 inches were inferior, and several excellent measures made by practised observers ranged around the length 9140 inches, the case would be different. But the best recent measures gave respectively 9110 and 9130 inches; and Smyth exclaims against the unfairness of Sir H. James in taking 9120 as 'therefore the [probable] true length of the side of the great pyramid when perfect,' calling this 'a dishonourable shelving of the honourable older observers with their larger results.' The only other measures, besides these two, are two by Colonel Howard Vyse and by the French savants, giving respectively 9168 and 9163·44 inches. The pyramidalists consider 9140 inches a fair mean value from these four. The natural inference, however, is, that the pyramid base is not now in a condition to be satisfactorily measured; and assuredly no such reliance can be placed on the mean value 9140 inches that, on the strength of it, we should believe what otherwise would be utterly incredible, viz. that the builders of the great pyramid knew 'both the size and shape of the earth exactly.' 'Humanly, or by human science, finding it out in that age was, of course, utterly impossible,' says Professor Smyth. But he is so confident of the average value derived from widely conflicting base measures as to assume that this value, not being humanly discoverable, was of necessity 'attributable to God and to His Divine inspiration.' We may agree, in fine, with Smyth, that the builders of the pyramid knew the earth to be a globe; that they took for their measure of length the sacred cubit, which, by their earth measures, they made very fairly approximate to the 20,000,000th part of the earth's mean diameter; but there seems no reason whatever for supposing (even if the supposition were not antecedently of its very nature inadmissible) that they knew anything about the compression of the earth, or that they had measured a degree of latitude in their own place with very wonderful accuracy.[20]
But here a very singular coincidence may be noticed, or, rather, is forced upon our notice by the pyramidalists, who strangely enough recognise in it fresh evidence of design, while the unbeliever finds in it proof that coincidences are no sure evidence of design. The side of the pyramid containing 365-1⁄4 times the sacred cubit of 25 pyramid inches, it follows that the diagonal of the base contains 12,912 such inches, and the two diagonals together contain 25,824 pyramid inches, or almost exactly as many inches as there are years in the great precessional period. 'No one whatever amongst men,' says Professor Smyth after recording various estimates of the precessional period, 'from his own or school knowledge, knew anything about such a phenomenon, until Hipparchus, some 1900 years after the great pyramid's foundation, had a glimpse of the fact; and yet it had been ruling the heavens for ages, and was recorded in Jeezeh's ancient structure.' To minds not moved to most energetic forgetfulness by the spirit of faith, it would appear that when a square base had been decided upon, and its dimensions fixed, with reference to the earth's diameter and the year, the diagonals of the square base were determined also; and, if it so chanced that they corresponded with some other perfectly independent relation, the fact was not to be credited to the architects. Moreover it is manifest that the closeness of such a coincidence suggests grave doubts how far other coincidences can be relied upon as evidence of design. It seems, for instance, altogether likely that the architects of the pyramid took the sacred cubit equal to one 20,000,000th part of the earth's diameter for their chief unit of length, and intentionally assigned to the side of the pyramid's square base a length of just so many cubits as there are days in the year; and the closeness of the coincidence between the measured length and that indicated by this theory strengthens the idea that this was the builder's purpose. But when we find that an even closer coincidence immediately presents itself, which manifestly is a coincidence only, the force of the evidence before derived from mere coincidence is pro tanto shaken. For consider what this new coincidence really means. Its nature may be thus indicated: Take the number of days in the year, multiply that number by 50, and increase the result in the same degree that the diagonal of a square exceeds the side—then the resulting number represents very approximately the number of years in the great precessional period. The error, according to the best modern estimates, is about one 575th part of the true period. This is, of course, a merely accidental coincidence, for there is no connection whatever in nature between the earth's period of rotation, the shape of a square, and the earth's period of gyration. Yet this merely accidental coincidence is very much closer than the other supposed to be designed could be proved to be. It is clear, then, that mere coincidence is a very unsafe evidence of design.
Of course the pyramidalists find a ready reply to such reasoning. They argue that, in the first place, it may have been by express design that the period of the earth's rotation was made to bear this particular relation to the period of gyration in the mighty precessional movement: which is much as though one should say that by express design the height of Monte Rosa contains as many feet as there are miles in the 6000th part of the sun's distance.[21] Then, they urge, the architects were not bound to have a square base for the pyramid; they might have had an oblong or a triangular base, and so forth—all which accords very ill with the enthusiastic language in which the selection of a square base had on other accounts been applauded.
Next let us consider the height of the pyramid. According to the best modern measurements, it would seem that the height when (if ever) the pyramid terminated above in a pointed apex, must have been about 486 feet. And from the comparison of the best estimates of the base side with the best estimates of the height, it seems very likely indeed that the intention of the builders was to make the height bear to the perimeter of the base the same ratio which the radius of a circle bears to the circumference. Remembering the range of difference in the base measures it might be supposed that the exactness of the approximation to this ratio could not be determined very satisfactorily. But as certain casing stones have been discovered which indicate with considerable exactness the slope of the original plane-surfaces of the pyramid, the ratio of the height to the side of the base may be regarded as much more satisfactorily determined than the actual value of either dimension. Of course the pyramidalists claim a degree of precision indicating a most accurate knowledge of the ratio between the diameter and the circumference of a circle; and the angle of the only casing stone measured being diversely estimated at 51° 50' and 51° 52-1⁄4', they consider 50° 51' 14·3" the true value, and infer that the builders regarded the ratio as 3·14159 to 1. The real fact is, that the modern estimates of the dimensions of the casing stones (which, by the way, ought to agree better if these stones are as well made as stated) indicate the values 3·1439228 and 3·1396740 for the ratio; and all we can say is, that the ratio really used lay probably between these limits, though it may have been outside either. Now the approximation of either is not remarkably close. It requires no mathematical knowledge at all to determine the circumference of a circle much more exactly. 'I thought it very strange,' wrote a circle-squarer once to De Morgan (Budget of Paradoxes, p. 389), 'that so many great scholars in all ages should have failed in finding the true ratio, and have been determined to try myself.' 'I have been informed,' proceeds De Morgan, 'that this trial makes the diameter to the circumference as 64 to 201, giving the ratio equal to 3·1410625 exactly. The result was obtained by the discoverer in three weeks after he first heard of the existence of the difficulty. This quadrator has since published a little slip and entered it at Stationers' Hall. He says he has done it by actual measurement; and I hear from a private source that he uses a disc of twelve inches diameter which he rolls upon a straight rail.' The 'rolling is a very creditable one; it is as much below the mark as Archimedes was above it. Its performer is a joiner who evidently knows