The Story of Evolution. Joseph McCabe
Table of Contents
CHAPTER I. THE DISCOVERY OF THE UNIVERSE
The beginning of the victorious career of modern science was very largely due to the making of two stimulating discoveries at the close of the Middle Ages. One was the discovery of the earth: the other the discovery of the universe. Men were confined, like molluscs in their shells, by a belief that they occupied the centre of a comparatively small disk—some ventured to say a globe—which was poised in a mysterious way in the middle of a small system of heavenly bodies. The general feeling was that these heavenly bodies were lamps hung on a not too remote ceiling for the purpose of lighting their ways. Then certain enterprising sailors—Vasco da Gama, Maghalaes, Columbus—brought home the news that the known world was only one side of an enormous globe, and that there were vast lands and great peoples thousands of miles across the ocean. The minds of men in Europe had hardly strained their shells sufficiently to embrace this larger earth when the second discovery was reported. The roof of the world, with its useful little system of heavenly bodies, began to crack and disclose a profound and mysterious universe surrounding them on every side. One cannot understand the solidity of the modern doctrine of the formation of the heavens and the earth until one appreciates this revolution.
Before the law of gravitation had been discovered it was almost impossible to regard the universe as other than a small and compact system. We shall see that a few daring minds pierced the veil, and peered out wonderingly into the real universe beyond, but for the great mass of men it was quite impossible. To them the modern idea of a universe consisting of hundreds of millions of bodies, each weighing billions of tons, strewn over billions of miles of space, would have seemed the dream of a child or a savage. Material bodies were "heavy," and would "fall down" if they were not supported. The universe, they said, was a sensible scientific structure; things were supported in their respective places. A great dome, of some unknown but compact material, spanned the earth, and sustained the heavenly bodies. It might rest on the distant mountains, or be borne on the shoulders of an Atlas; or the whole cosmic scheme might be laid on the back of a gigantic elephant, and—if you pressed—the elephant might stand on the hard shell of a tortoise. But you were not encouraged to press.
The idea of the vault had come from Babylon, the first home of science. No furnaces thickened that clear atmosphere, and the heavy-robed priests at the summit of each of the seven-staged temples were astronomers. Night by night for thousands of years they watched the stars and planets tracing their undeviating paths across the sky. To explain their movements the priest-astronomers invented the solid firmament. Beyond the known land, encircling it, was the sea, and beyond the sea was a range of high mountains, forming another girdle round the earth. On these mountains the dome of the heavens rested, much as the dome of St. Paul's rests on its lofty masonry. The sun travelled across its under-surface by day, and went back to the east during the night through a tunnel in the lower portion of the vault. To the common folk the priests explained that this framework of the world was the body of an ancient and disreputable goddess. The god of light had slit her in two, "as you do a dried fish," they said, and made the plain of the earth with one half and the blue arch of the heavens with the other.
So Chaldaea lived out its 5000 years without discovering the universe. Egypt adopted the idea from more scientific Babylon. Amongst the fragments of its civilisation we find representations of the firmament as a goddess, arching over the earth on her hands and feet, condemned to that eternal posture by some victorious god. The idea spread amongst the smaller nations which were lit by the civilisation of Babylon and Egypt. Some blended it with coarse old legends; some, like the Persians and Hebrews, refined it. The Persians made fire a purer and lighter spirit, so that the stars would need no support. But everywhere the blue vault hemmed in the world and the ideas of men. It was so close, some said, that the birds could reach it. At last the genius of Greece brooded over the whole chaos of cosmical speculations.
The native tradition of Greece was a little more helpful than the Babylonian teaching. First was chaos; then the heavier matter sank to the bottom, forming the disk of the earth, with the ocean poured round it, and the less coarse matter floated as an atmosphere above it, and the still finer matter formed an "aether" above the atmosphere. A remarkably good guess, in its very broad outline; but the solid firmament still arched the earth, and the stars were little undying fires in the vault. The earth itself was small and flat. It stretched (on the modern map) from about Gibraltar to the Caspian, and from Central Germany—where the entrance to the lower world was located—to the Atlas mountains. But all the varied and conflicting culture of the older empires was now passing into Greece, lighting up in succession the civilisations of Asia Minor, the Greek islands, and then Athens and its sister states. Men began to think.
The first genius to have a glimpse of the truth seems to have been the grave and mystical Pythagorus (born about 582 B.C.). He taught his little school that the earth was a globe, not a disk, and that it turned on its axis in twenty-four hours. The earth and the other planets were revolving round the central fire of the system; but the sun was a reflection of this central fire, not the fire itself. Even Pythagoras, moreover, made the heavens a solid sphere revolving, with its stars, round the central fire; and the truth he discovered was mingled with so much mysticism, and confined to so small and retired a school, that it was quickly lost again. In the next generation Anaxagoras taught that the sun was a vast globe of white-hot iron, and that the stars were material bodies made white-hot by friction with the ether. A generation later the famous Democritus came nearer than any to the truth. The universe was composed of an infinite number of indestructible particles, called "atoms," which had gradually settled from a state of chaotic confusion to their present orderly arrangement in large masses. The sun was a body of enormous size, and the points of light in the Milky Way were similar suns at a tremendous distance from the earth. Our universe, moreover, was only one of an infinite number of universes, and an eternal cycle of destruction and re-formation was running through these myriads of worlds.
By sheer speculation Greece was well on the way of discovery. Then the mists of philosophy fell between the mind of Greece and nature, and the notions of Democritus were rejected with disdain; and then, very speedily, the decay of the brilliant nation put an end to its feverish search for truth. Greek culture passed to Alexandria, where it met the remains of the culture of Egypt, Babylonia, and Persia, and one more remarkable effort was made to penetrate the outlying universe before the night of the Middle Ages fell on the old world.
Astronomy was ardently studied at Alexandria, and was fortunately combined with an assiduous study of mathematics. Aristarchus (about 320–250 B.C.) calculated that the sun was 84,000,000 miles away; a vast expansion of the solar system and, for the time, a remarkable approach to the real figure (92,000,000) Eratosthenes (276–196 B.C.) made an extremely good calculation of the size of the earth, though he held it to be the centre of a small universe. He concluded that it was a globe measuring 27,000 (instead of 23,700) miles in circumference. Posidonius (135–51 B.C.) came even nearer with a calculation that the circumference was between 25,000 and 19,000 miles; and he made a fairly correct estimate of the diameter, and therefore distance, of the sun. Hipparchus (190–120 B.C.) made an extremely good calculation of the distance of the moon.
By the brilliant work of the Alexandrian astronomers the old world seemed to be approaching the discovery of the universe. Men were beginning to think in millions, to gaze boldly into deep abysses of space, to talk of vast fiery globes that made the earth insignificant But the splendid energy gradually failed, and the long line was closed by Ptolemaeus, who once more put the earth in the centre of the system, and so imposed what is called the Ptolemaic system on Europe. The keen school-life of Alexandria still ran on, and there might have been a return to the saner early doctrines, but at last Alexandrian culture was extinguished in the blood of the aged Hypatia, and the night fell. Rome had had no genius for science; though Lucretius gave an immortal expression to the views of Democritus and Epicurus, and such writers as Cicero and Pliny did great service to a later age in preserving