Biological Mechanisms of Tooth Movement. Группа авторов

Biological Mechanisms of Tooth Movement - Группа авторов


Скачать книгу
of cells. After exocytose they can bind to prostaglandin receptors on different target cells, in which a wide variety of effects can be induced (Binderman et al., 1988; Mundy, 1993; Hadjidakis and Androulakis, 2006)

      Cell–matrix interactions

      The ECM provides a scaffold for cell adhesion, which can occur in two ways: by hemidesmosomes, connecting the ECM to intermediate filaments such as keratin, and by focal adhesions, connecting the ECM to actin filaments within the cell. The latter is the most important for OTM. In both types of adhesion, specific cellular adhesion molecules known as integrins are essential (Barczyk et al., 2013; Walko et al., 2015).

      Integrins act as receptors for ECM glycoproteins such as fibronectin, vitronectin, and proteins such as collagen and laminin, which contain the amino acid sequence arginine, glycine, aspartate (RGD motif). They can also bind to integrins on the surface of other cells (Duong et al., 2000; Kechagia et al., 2019)

Schematic illustration of Integrin and its subunits.

      (Source: Jaap Maltha.)

Schematic illustration of the focal adhesion complex.

      (Source: Jaap Maltha.)

Schematic illustration of the nucleus-related part of the cytoskeleton.

      (Source: Jaap Maltha.)

      It is essential that the composition and the distribution of the focal adhesions within a cell change to allow its migration. Initially, new focal adhesion complexes and cytoskeletal structures are formed at cellular protrusions, the lamellipodia. They mature and remain stationary with respect to the ECM through integrins. The cell uses this as an anchor on which it can push or pull itself over the ECM. At the same time, focal adhesion complexes at the trailing edge are disassembled, together with the cytoskeletal structures, allowing cell migration along the ECM (Martino et al., 2018; Kechagia et al., 2019).

      Phases of OTM

      In 1962, Burstone suggested that, if the rates of OTM were plotted against time, there would be three phases of OTM: the initial phase, a lag phase, and a post‐lag phase. The initial phase is characterized by a period of very rapid movement, which occurs immediately after application of force to the tooth. This rate is attributed to the displacement of the tooth within the PDL space and bending of the alveolar bone. This phase is followed by a lag period, when no or low rates of tooth displacement occur. This lag results from hyalinization of the PDL in areas of compression. No further tooth movement will occur until cells complete the removal of all necrotic tissues. During the third phase, the rate of movement gradually or suddenly increases. Experiments by Hixon and co‐workers (Hixon et al., 1969, 1970) revealed two phases in OTM: an initial mechanical displacement, and a delayed metabolic response.

Graph depicts the general time–displacement curve of OTM.

      (Source: Jaap Maltha.)

      At the trailing side of the tooth (formerly incorrectly called the tension side), the periodontal space is widened, which leads to a temporal decrease in tissue pressure, and a widening of the blood vessels (von Böhl and Kuijpers‐Jagtman, 2009).

Скачать книгу