Common Science. Carleton Washburne

Common Science - Carleton Washburne


Скачать книгу
experiment with air pressure because we can get almost entirely rid of it in places and can then watch what happens. A place from which the air is practically all pumped out is called a vacuum. Here are some interesting experiments that will show what air pressure does:

      

       Table of Contents

      Experiment 2. Hold a burned-out electric lamp in a basin of water, break its point off, and see what happens.

      All the common electric lamps (less than 70 watts) are made with vacuums inside. The reason for this is that the fine wire would burn up if there were any air in the lamps. When you knock the point off the globe, it leaves a space into which the water can be pushed. Since the air is pressing hard on the surface of the water except in the one place where the vacuum in the lamp globe is, the water is forced violently into this empty space.

      It really is a good deal like the way mud comes up between your toes when you are barefoot. Your foot is pressing on the mud all around except in the spaces between your toes, and so the mud is forced up into these spaces. The air pressure on the water is like your foot on the mud, and the space in the lamp globe is like the space between your toes. Since wherever there is air it is pressing hard, the only space into which it can force water or anything else is into a place from which all the air has been removed, like the inside of the lamp globe.

      The reason that the water does not run out of the globe is this: the hole is too small to let the air squeeze up past the water, and therefore no air can take the place of the water that might otherwise run out. In order to flow out, then, the water would have to leave an empty space or vacuum behind it, and the air pressure would not allow this.

      Why water gurgles when it pours out of a bottle. You have often noticed that when you pour water out of a bottle it gurgles and gulps instead of flowing out evenly. The reason for this is that when a little water gets out and leaves an empty space behind, the air pushing against the water starts to force it back up; but since the mouth of the bottle is fairly wide, the air itself squeezes past the water and bubbles up to the top.

      Experiment 3. Put a straw or a piece of glass tube down into a glass of water. Hold your finger tightly over the upper end, and lift the tube out of the water. Notice how the water stays in the tube. Now remove your finger from the upper end.

      The air holds the water up in the tube because there is no room for it to bubble up into the tube to take the place of the water; and the water, to flow out of the tube, would have to leave a vacuum, which the air outside does not allow. But when you take your finger off the top of the straw or tube, the air from above takes the place of the water as rapidly as it flows out; so there is no tendency to form a vacuum, and the water leaves the tube. Now do you see why you make two holes in the top of a can of evaporated milk when you wish to pour the milk out evenly?

       Table of Contents

      Experiment 4. Push a rubber suction cap firmly against the inside of the bell jar of an air pump. Try to pull the suction cap off. If it comes off, press it on again; place the bell jar on the plate of the air pump, and pump the air out of the jar. What must have been holding the suction cap against the inside of the jar? Does air press up and sidewise as well as down? Test this further in the following experiment:

      

       Table of Contents

      Experiment 5. Put a cork into an empty bottle. Do not use a new cork, but one that has been fitted into the bottle many times and has become shaped to the neck. Press the cork in rather firmly, so that it is air-tight, but do not jam it in. Set the bottle on the plate of the air pump, put the bell jar over it, and pump the air out of the jar. What makes the cork fly out of the bottle? What was really in the "empty" bottle? Why could it not push the cork out until you had pumped the air out of the jar?

      Experiment 6. Wax the rims of the two Magdeburg hemispheres (see Fig. 7). Screw the lower section into the hole in the plate of the air pump. Be sure that the stop valve in the neck of the hemisphere is open. (The little handle should be vertical.) Fit the other section on to the first, and pump out as much air as you can. Close the stop valve. Unscrew the hemispheres from the air pump. Try to pull them apart—pull straight out, taking care not to slide the parts. If you wish, let some one else take one handle, and see if the two of you can pull it apart.

      

       Table of Contents

      Before you pumped the air out of the hemisphere, the compressed air inside of them (you remember all the air down here is compressed) was pushing them apart just as hard as the air outside of them was pushing them together. When you pumped the air out, however, there was hardly any air left inside of them to push outward. So the strong pressure of the outside air against the hemispheres had nothing to oppose it. It therefore pressed them very tightly together and held them that way.

      This experiment was first tried by a man living in Magdeburg, Germany. The first set of hemispheres he used proved too weak, and when the air in them was partly pumped out, the pressure of the outside air crushed them like an egg shell. The second set was over a foot in diameter and much stronger. After he had pumped the air out, it took sixteen horses, eight pulling one way and eight the opposite way, to pull the hemispheres apart.

      Experiment 7. Fill a bottle (or flask) half full of water. Through a one-hole stopper that will fit the bottle, put a bent piece of glass tubing that will reach down to the bottom of the bottle. Set the bottle, thus stoppered, on the plate of the air pump, with a beaker or tumbler under the outer end of the glass tube. Put the bell jar over the bottle and glass, and pump the air out of the jar. What is it that forces the water up and out of the bottle? Why could it do this when the air was pumped out of the bell jar and not before?

      How a seltzer siphon works. A seltzer siphon works on the same principle. But instead of the ordinary compressed air that is all around us, there is in the seltzer siphon a gas (carbon dioxid) which has been much more compressed than ordinary air. This strongly compressed gas forces the seltzer water out into the less compressed air, exactly as the compressed air in the upper part of the bottle forced the water out into the comparative vacuum of the bell jar in Experiment 7.

      Experiment 8. Fill a toy balloon partly full of air by blowing into it, and close the neck with a rubber band so that no air can escape. Lay a saucer over the hole in the plate of the air pump, so that the rubber of the balloon cannot be sucked down the hole. Lay the balloon on top of this saucer, put the bell jar over it, and pump the air out of the jar. What makes the balloon expand? What is in it? Why could it not expand before you pumped the air out from around it?

      A


Скачать книгу