The Birth-Time of the World and Other Scientific Essays. John Joly
measure
it twice over. We may exaggerate its thickness by measuring it
not quite straight across the bedding or by unwittingly including
volcanic materials. On the other hand, there
5
may be deposits which are inaccessible to us; or, again, an
entire absence of deposits; either because not laid down in the
areas we examine, or, if laid down, again washed into the sea.
These sources of error in part neutralise one another. Some make
our resulting age too long, others make it out too short. But we
do not know if a balance of error does not still remain. Here,
however, is a table of deposits which summarises a great deal of
our knowledge of the thickness of the stratigraphical
accumulations. It is due to Sollas.[1]
Feet.
Recent and Pleistocene - - 4,000
Pliocene - - 13,000
Miocene - - 14,000
Oligocene - - 2,000
Eocene - - 20,000
63,000
Upper Cretaceous - - 24,000
Lower Cretaceous - - 20,000
Jurassic - - 8,000
Trias - - 7,000
69,000
Permian - - 2,000
Carboniferous - - 29,000
Devonian - - 22,000
63,000
Silurian - - 15,000
Ordovician - - 17,000
Cambrian - - 6,000
58,000
Algonkian—Keeweenawan - - 50,000
Algonkian—Animikian - - 14,000
Algonkian—Huronian - - 18,000
82,000
Archæan - - ?
Total - - 335,000 feet.
[1] Address to the Geol. Soc. of London, 1509.
6
In the next place we require to know the average rate at which
these rocks were laid down. This is really the weakest link in
the chain. The most diverse results have been arrived at, which
space does not permit us to consider. The value required is most
difficult to determine, for it is different for the different
classes of material, and varies from river to river according to
the conditions of discharge to the sea. We may probably take it
as between two and six inches in a century.
Now the total depth of the sediments as we see is about 335,000
feet (or 64 miles), and if we take the rate of collecting as
three inches in a hundred years we get the time for all to
collect as 134 millions of years. If the rate be four inches, the
time is soo millions of years, which is the figure Geikie
favoured, although his result was based on somewhat different
data. Sollas most recently finds 80 millions of years.[1]
THE AGE AS INFERRED FROM THE MASS OF THE SEDIMENTS
In the above method we obtain our result by the measurement of
the linear dimensions of the sediments. These measurements, as we
have seen, are difficult to arrive at. We may, however, proceed
by measurements of the mass of the sediments, and then the method
becomes more definite. The new method is pursued as follows:
[1] Geikie, _Text Book of Geology_ (Macmillan, 1903), vol. i., p.
73, _et seq._ Sollas, _loc. cit._ Joly, _Radioactivity and Geology_
(Constable, 1909), and Phil. Mag., Sept. 1911.
7
The total mass of the sediments formed since denudation began may
be ascertained with comparative accuracy by a study of the
chemical composition of the waters of the ocean. The salts in the
ocean are undoubtedly derived from the rocks; increasing age by
age as the latter are degraded from their original character
under the action of the weather, etc., and converted to the
sedimentary form. By comparing the average chemical composition
of these two classes of material—the primary or igneous rocks and
the sedimentary—it is easy to arrive at a knowledge of how much
of this or that constituent was given to the ocean by each ton of
primary rock which was denuded to the sedimentary form. This,
however, will not assist us to our object unless the ocean has
retained the salts shed into it. It has not generally done so. In
the case of every substance but one the ocean continually gives
up again more or less of the salts supplied to it by the rivers.
The one exception is the element sodium. The great solubility of
its salts has protected it from abstraction, and it has gone on
collecting during geological time, practically in its entirety.
This gives us the clue to the denudative history of the
Earth.[1]
The process is now simple. We estimate by chemical examination of
igneous and sedimentary rocks the amount of sodium which has been
supplied to the ocean per ton of sediment produced by denudation.
We also calculate
[1] _Trans. R.D.S._, May, 1899.
8
the amount of sodium contained in the ocean. We divide the one
into the other (stated, of course, in the same units of mass),
and the quotient gives us the number of tons of sediment. The
most recent estimate of the sediments made in this manner affords
56 x 1016 tonnes.[1]
Now we are assured that all this sediment was transported by the
rivers to the sea during geological time. Thus it follows that,
if we can estimate the average annual rate of the river supply of
sediments to the ocean over the past, we can calculate the
required age. The land surface is at present largely covered with
the sedimentary rocks themselves. Sediment derived from these
rocks must be regarded as, for the most part, purely cyclical;
that is, circulating from the sea to the land and back again. It
does not go to increase the great body of detrital deposits. We
cannot, therefore, take the present river supply of sediment as
representing