Правила счета элементов бесконечного множества. Петр Путенихин

Правила счета элементов бесконечного множества - Петр Путенихин


Скачать книгу
из величайших умов своего времени, главное различие между актуальной и потенциальной бесконечностью заключается в следующем. Потенциально бесконечное есть всегда нечто возрастающее и имеющее пределом бесконечность, тогда как актуальная бесконечность – это завершённое целое, в действительности содержащее бесконечное число предметов [5].

      В литературе можно встретить описание довольно интересного способа подсчета количества точек на отрезке линии. Нетрудно догадаться, что в этом примере использованная методика счета ошибочна и ведет к ошибочному выводу. Несложное доказательство несчетности содержит не очень сильно скрытую подмену понятий. Итак:

      "Теперь уже несложно доказать, что множество всех точек на прямой линии несчетно. Вместо этого множества можно говорить о множестве всех действительных чисел, так как каждой точке прямой соответствует действительное число и обратно. Каждое действительное число можно записать в виде бесконечной десятичной дроби вида α,α1α2α3…αn…" [3, с.73-74].

      Как видим, ряд знаков имеет бесконечное счетное количество знаков и, резонно предположим, что так же считает и автор доказательства. Сразу же заметим, что утверждения следует признать абсурдными. Любое конечное число всегда меньше бесконечности.

      "Предположим, что нам удалось каким-то образом перенумеровать все действительные числа. Чтобы доказать, что это предположение неверно, достаточно построить хоть одно незанумерованное число. … поступим следующим образом. Сначала напишем нуль и поставим после него запятую. Потом возьмем число, получившее первый номер, и посмотрим на его первый десятичный знак после запятой (то есть на число десятых)" [там же].

      Для определенности отметим, что поиск незанумерованного числа производится, как можно заметить, на отдельном интервале всех действительных чисел [0, 1]. Сначала как на неточность в этом рассуждении, как и в предыдущем доказательстве, сразу же укажем на очевидное, но, похоже, незамеченное обстоятельство: на самом деле при последовательном, возрастающем счёте у второго числа вторая цифра тоже будет 0. И у третьего. И у четвертого. И у числа, занимающего бесконечно большую позицию. На словах это, возможно, не совсем ясно, поэтому покажем это на "виновнике торжества" – на оцифрованном отрезке:

      Рис.1. Оцифрованный отрезок, отдельный интервал всех действительных чисел

      На рисунке видно, что первая цифра после нуля будет отличной от нуля, единица будет только после точки 0,1 отрезка. На интервале от 0 до 0,1 содержится счетное (пока оспариваемое) количество точек. Во всяком случае, это не одна, не миллион и даже не гугл точек, равный 10100, а в бесконечное число раз больше. У всех этих чисел первой цифрой после запятой будет ноль. Следовательно, искомое число пока находится вблизи нулевой точки, в самом начале отрезка [0, 1].

      "Если эта цифра отлична от 1, то в числе, которое мы пишем, поставим после запятой 1, а если эта цифра равна 1, то поставим


Скачать книгу