A Handbook on Multi-Attribute Decision-Making Methods. Omid Bozorg-Haddad
PAPRIKA
1.4 Conclusion
Almost everyone, on a daily bases, faces decision‐making problems. It would not be exaggerated to state that these decisions constitute the nature of mankind and of the society that humans form. When it comes to real‐world decision‐making problems, the decision‐makers often find judgment a challenging task. This is so because of the notion that the interest of the stakeholders can be only represented through the evaluation of a set of conflictive criteria. Whenever the decision‐makers face a set of feasible, discrete, alternatives, the problem at hand involves MADM. Numerous methods have been presented by been reported to ensure a sound and reliable decision‐making process. MADM is one of the main branches of operational research; it is an active field of study with multiple overlaps with many scientific disciplines, and has numerous practical applications. This chapter reviewed the principles of MADM. Furthermore, the best well‐known MADMs were herein classified and reviewed.
References
1 Banihabib, M.E., Hashemi‐Madani, F.S., and Forghani, A. (2017). Comparison of compensatory and non‐compensatory multi criteria decision making models in water resources strategic management. Water Resources Management 31 (12): 3745–3759.
2 Bell, D.E., Raiffa, H., and Tversky, A. (1988). Decision Making: Descriptive, Normative, and Prescriptive Interactions. Cambridge, UK: Cambridge University Press.
3 Bellman, R.E. and Zadeh, L.A. (1970). Decision‐making in a fuzzy environment. Management Science 17 (4): 141–164.
4 Belton, V. and Stewart, T. (2002). Multiple Criteria Decision Analysis: An Integrated Approach. Massachusetts, BST: Kluwer Academic Publishers.
5 Benayoun, R., Roy, B., and Sussman, B. (1966). ELECTRE: Une méthode pour guider le choix en présence de points de vue multiples. Note de travail 49, SEMA‐METRA International, Direction Scientifique, Paris, France.
6 Bernstein, P. (1996). Against the Gods: The Remarkable Story of Risk. New York, NY: Wiley.
7 Bernoulli, D. (1738). Specimen theoriae novae de mensura sortis. Comentarii Academiae Scientiarum Imperiales Petropolitanae 1738 (5): 175–192.
8 Black, D. (1948). On the rationale of group decision‐making. Journal of Political Economy 56 (1): 23–34.
9 Bozorg‐Haddad, O., Solgi, M., and Loáiciga, H.A. (2017). Meta‐heuristic and Evolutionary Algorithms for Engineering Optimization. Hoboken, NJ: Wiley.
10 Brans, J.P. (1982). L’ingénierie de la decision. Elaboration d’instruments d’aide a la decision: Methode PROMETHEE. In: L’aide a la Decision: Nature, Instruments et Perspectives D’avenir (eds. R. Nadeau and M. Landry), 183–214. Québec, Canada: Presses de Universite Laval.
11 Brans, J.P., Vincke, P., and Mareschal, B. (1986). How to select and how to rank projects: the PROMETHEE method. European Journal of Operational Research 24 (2): 228–238.
12 Choo, E.U. and Wedley, W.C. (1985). Optimal criterion weights in repetitive multicriteria decision‐making. Journal of the Operational Research Society 36 (11): 983–992.
13 Chu, A.T.W., Kalaba, R.E., and Spingarn, K. (1979). A comparison of two methods for determining the weights of belonging to fuzzy sets. Journal of Optimization Theory and Applications 27 (4): 531–538.
14 Churchman, C.W. and Ackoff, R.L. (1954). An approximate measure of value. Journal of the Operations Research Society of America 2 (2): 172–187.
15 Coombs, C.H. and Pruitt, D.G. (1960). Components of risk in decision making: probability and variance preferences. Journal of Experimental Psychology 60 (5): 265.
16 Custer, R.L., Scarcella, J.A., and Stewart, B.R. (1999). The modified Delphi technique: a rotational modification. Journal of Career and Technical Education 15 (2): 50–58.
17 Dalkey, N. and Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management Science 9 (3): 458–467.
18 Deng, J. (1989). Introduction to grey system theory. The Journal of Grey System 1 (1): 1–24.
19 Fan, Z.P. (1996). Complicated multiple attribute decision making: theory and applications. Ph.D. Dissertation. Northeastern University. Shenyang, China.
20 Hansen, P. and Ombler, F. (2008). A new method for scoring additive multi‐attribute value models using pairwise rankings of alternatives. Journal of Multi‐Criteria Decision Analysis 15 (3–4): 87–107.
21 Hwang, C.L. and Yoon, K. (1981). Methods for multiple attribute decision making. In: Multiple Attribute Decision Making: Lecture Notes in Economics and Mathematical Systems (eds. C.L. Hwang and K. Yoon), 58–191. Heidelberg, Germany: Springer Publication Company.
22 Jeffreys, I. (2004). The use of compensatory and non‐compensatory multi‐criteria analysis for small‐scale forestry. Small‐Scale Forest Economics, Management and Policy 3 (1): 99–117.
23 Kahneman, D. and Tversky, A. (1984). Choices, values, and frames. American Psychologist 39 (4): 341.
24 Kiesler, S. and Sproull, L. (1992). Group decision making and communication technology. Organizational Behavior and Human Decision Processes 52 (1): 96–123.
25 Kleindorfer, P.R., Kunreuther, H., and Schoemaker, P.J. (1993). Decision Sciences: An Integrative Perspective. Cambridge, UK: Cambridge University Press.
26 Malczewski, J. (1999). GIS and Multicriteria Decision Analysis. New York, NY: Wiley.
27 Mendoza, G.A. and Martins, H. (2006). Multi‐criteria decision analysis in natural resource management: a critical review of methods and new modelling paradigms. Forest Ecology and Management 230 (1–3): 1–22.
28 Mladineo, N., Margeta, J., Brans, J.P., and Mareschal, B. (1987). Multicriteria ranking of alternative locations for small scale hydro plants. European Journal of Operational Research 31 (2): 215–222.
29 Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Ph.D. Thesis. Faculty of Civil Engineering. Belgrade, Serbia.
30 Pearl, J. (1996). Decision making under uncertainty. ACM Computing Surveys 28 (1): 89–92.
31 Rezaei, J., Wang, J., and Tavasszy, L. (2015). Linking supplier development to supplier segmentation using best‐worst method. Expert Systems with Applications 42 (23): 9152–9164.
32 Rieger, M.O. and Wang, M. (2006). Cumulative prospect theory and the St. Petersburg paradox. Economic Theory 28 (3): 665–679.
33 Roy, B. (1978). ELECTRE III: Un algorithme de classement fondé sur une représentation floue des préférences en présence de critères multiples. Cahiers du Centre d’Etudes de Recherche Opérationnelle 20 (1): 3–24.
34 Roy, B. and Bertier,