Na-ion Batteries. Laure Monconduit
Y.J., Gao, Y.R., Wang, X.F., Shen, X., Kong, Q.Y., Yu, R.C., Lu, G., Wang, Z.X., and Chen, L.Q. (2018). Iron migration and oxygen oxidation during sodium extraction from NaFeO2. Nano Energy, 47, 519–526.
Li, Z.-Y., Gao, R., Sun, L., Hu, Z., and Liu, X. (2017). Zr-doped P2-Na0.75Mn0.55Ni0.25 Co0.05Fe0.10Zr0.05O2 as high-rate performance cathode material for sodium ion batteries. Electrochimica Acta, 223, 92–99.
Lim, S.Y., Kim, H., Chung, J., Lee, J.H., Kim, B.G., Choi, J.J., Chung, K.Y., Cho, W., Kim, S.J., Goddard, W.A., Jung, Y., and Choi, J.W. (2014). Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 599–604.
Liu, L., Li, X., Bo, S.-H., Wang, Y., Chen, H., Twu, N., Wu, D., and Ceder, G. (2015). High-performance P2-type Na2/3(Mn1/2Fe1/4Co1/4)O2 cathode material with superior rate capability for Na-ion batteries. Advanced Energy Materials, 5(22), 1500944.
Lu, Z.H. and Dahn, J.R. (2001a). In situ X-ray diffraction study of P2-Na2/3[Ni1/3Mn2/3]O2. Journal of the Electrochemical Society, 148(11), A1225–A1229.
Lu, Z.H. and Dahn, J.R. (2001b). Intercalation of water in P2, T2 and O2 structure A(z)[COxNi1/3-xMn2/3]O2. Chemistry of Materials, 13(4), 1252–1257.
Ma, C.Z., Alvarado, J., Xu, J., Clement, R.J., Kodur, M., Tong, W., Grey, C.P., and Meng, Y.S. (2017). Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries. Journal of the American Chemical Society, 139(13), 4835–4845.
Ma, X.H., Chen, H.L., and Ceder, G. (2011). Electrochemical properties of monoclinic NaMnO2. Journal of the Electrochemical Society, 158(12), A1307–A1312.
Maazaz, A. and Delmas, C. (1982). On new phases with formula NaxTiO2. Comptes Rendus De L Académie Des Sciences Série Ii, 295(8), 759–760.
Maazaz, A., Delmas, C., and Hagenmuller, P. (1983). A study of the NaxTiO2 system by electrochemical deintercalation. Journal of Inclusion Phenomena, 1(1), 45–51.
Marcus, Y. (1985). Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed-solvents. 3. Standard potentials of selected electrodes. Pure and Applied Chemistry, 57(8), 1129–1132.
Mariyappan, S., Hemalatha, K., Ramesha, K., Tarascon, J.M., and Prakash, A.S. (2012). Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2. Chemistry of Materials, 24(10), 1846–1853.
Mariyappan, S., Thomas, J., Batuk, D., Pimenta, V., Gopalan, R., and Tarascon, J.-M. (2017). Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2-NaxMO2 electrodes. Chemistry of Materials, 29(14), 5948–5956.
Mariyappan, S., Wang, Q., and Tarascon, J.M. (2018b). Will sodium layered oxides ever be competitive for sodium ion battery applications? Journal of The Electrochemical Society, 165(16), A3714–A3722.
Mariyappan, S., Marchandier, T., Rabuel, F., Iadecola, A., Rousse, G., Morozov, A. V., and Tarascon, J. M. (2020). The role of divalent (Zn2+/Mg2+/Cu2+) substituents in achieving full capacity of sodium layered oxides for Na-ion battery applications. Chemistry of Materials, 32(4), 1657–1666.
Martinez De Ilarduya, J., Otaegui, L., López Del Amo, J.M., Armand, M., and Singh, G. (2017). NaN3 addition, a strategy to overcome the problem of sodium deficiency in P2-Na0.67[Fe0.5Mn0.5]O2 cathode for sodium-ion battery. Journal of Power Sources, 337, 197–203.
Matsumura, T., Sonoyama, N., and Kanno, R. (2003). Synthesis, structure and electrochemical properties of layered material, Li2/3[Mn1/3Fe2/3]O2, with mixed stacking states. Solid State Ionics, 161(1–2), 31–39.
Mendiboure, A., Delmas, C., and Hagenmuller, P. (1985). Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. Journal of Solid State Chemistry, 57(3), 323–331.
Mishra, S.K. and Ceder, G. (1999). Structural stability of lithium manganese oxides. Physical Review B, 59(9), 6120–6130.
Mizushima, K., Jones, P.C., Wiseman, P.J., and Goodenough, J.B. (1980). Lithium cobalt oxide(LixCoO2) (0<x<1): A new cathode material for batteries of high energy density.
Materials Research Bulletin, 15(6), 783–789.
Momma, K. and Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272–1276.
Monyoncho, E. and Bissessur, R. (2013). Unique properties of alpha-NaFeO2: De-intercalation of sodium via hydrolysis and the intercalation of guest molecules into the extract solution. Materials Research Bulletin, 48(7), 2678–2686.
Mortemard De Boisse, B., Carlier, D., Guignard, M., Bourgeois, L., and Delmas, C. (2014). P2-NaxMn1/2Fe1/2O2 phase used as positive electrode in Na batteries: Structural changes induced by the electrochemical (de)intercalation process. Inorganic Chemistry, 53(20), 11197–11205.
Mortemard de Boisse, B. M., Liu, G., Ma, J., Nishimura, S. I., Chung, S. C., Kiuchi, H., and Yamada, A. (2016). Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode. Nature communications, 7(1), 1–9
Mortemard de Boisse, B., Nishimura, S. I., Watanabe, E., Lander, L., Tsuchimoto, A., Kikkawa, J., and Yamada, A. (2018). Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na4/7− x [□ 1/7Mn6/7] O2 (□: Mn Vacancy). Advanced Energy Materials, 8(20), 1800409.
Mortemard de Boisse, B. M., Reynaud, M., Ma, J., Kikkawa, J., Nishimura, S. I., Casas-Cabanas, M., and Yamada, A. (2019). Coulombic self-ordering upon charging a largecapacity layered cathode material for rechargeable batteries. Nature Communications, 10(1), 1–7.
Mu, L., Xu, S., Li, Y., Hu, Y.-S., Li, H., Chen, L., and Huang, X. (2015). Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Advanced Materials, 27(43), 6928–6933.
Mu, L.Q., Hou, Q.P., Yang, Z.Z., Zhang, Y., Rahman, M.M., Kautz, D.J., Sun, E., Du, X.W., Du, Y.G., Nordlund, D., and Lin, F. (2019). Water-processable P2-Na0.67Ni0.22Cu0.11Mn0.56Ti0.11O2 cathode material for sodium ion batteries. Journal of the Electrochemical Society, 166(2), A251–A257.
Nanba, Y., Iwao, T., De Boisse, B.M., Zhao, W.W., Hosono, E., Asakura, D., Niwa, H., Kiuchi, H., Miyawaki, J., Harada, Y., Okubo, M., and Yamada, A. (2016). Redox potential paradox in NaxMO2 for sodium-ion battery cathodes. Chemistry of Materials, 28(4), 1058–1065.
Newman, G.H. and Klemann, L.P. (1980). Ambient-temperature cycling of an Na-TiS2 cell. Journal of the Electrochemical Society, 127(10), 2097–2099.
Nitta, K., Inazawa, S., Sakai, S., Fukunaga, A., Itani, E., Numata, K., Hagiwara, R., and Nohira, T. (2013). Development of molten salt electrolyte battery. SEI Tech. Rev., 76, 27–33.
Nose, M., Shiotani, S., Nakayama, H., Nobuhara, K., Nakanishi, S., and Iba, H. (2013). Na4Co2.4Mn0.3Ni0.3(PO4)2P2O7: High potential and high capacity electrode material for sodium-ion batteries. Electrochemistry Communications, 34, 266–269.
Okada,