Heat Transfer 1. Abdelkhalak El Hami
276
288 277
289 278
290 279
291 280
292 281
293 283
294 284
295 285
296 286
297 287
298 288
299 289
300 291
301 292
302 293
303 294
304 295
305 296
306 297
307 298
308 299
309 301
310 302
311 303
312 304
313 305
314 306
315 307
316 309
317 310
318 311
319 313
320 315
321 316
322 317
323 318
324 319
325 320
326 321
327 322
328 323
329 324
330 325
Mathematical and Mechanical Engineering Set
coordinated by
Abdelkhalak El Hami
Volume 9
Heat Transfer 1
Conduction
Michel Ledoux
Abdelkhalak El Hami
First published 2021 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:
ISTE Ltd
27-37 St George’s Road
London SW19 4EU
UK
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030
USA
© ISTE Ltd 2021
The rights of Michel Ledoux and Abdelkhalak El Hami to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.
Library of Congress Control Number: 2020949611
British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-78630-516-9
Preface
Thermal science is to thermodynamics as decree is to law. It answers the following question – which all good leaders must (or should) ask themselves whenever they have an “idea”: “How would this work in practice?”. In a way, thermal science “implements” thermodynamics, of which it is a branch. A thermodynamics specialist is a kind of energy economist. Applying the first principle, they create a “grocery store”. With the second principle, they talk about the quality of their products. I add or remove heat from a source or work from a system. And the temperature, among other things, defines the quality of the energy for me.
But by what means do I take or do I give? Even calculations of elementary reversible transformations do not tell us by what process heat passes from a source to a system.
Thermal science specifies how, but “evacuates” the work. If in a given problem related to, for example, a convector where electrical energy (therefore in the “work” category) appears, it is immediately dissipated into heat by the Joule effect.
Three heat transfer modes can be identified: conduction and radiation – which can be seen separately, although they are often paired up – and convection, which is by nature an interaction of fluid mechanics and conduction.
Dividing the study of thermal science into three is the result of logic. Presenting this work in three volumes is somewhat arbitrary; in our opinion, however, this split was necessary in order to keep the volumes in the collection a reasonable size.
This book is Volume 1 of a collection of problems on heat transfer, devoted to thermal conduction and numerical approaches to such transfers. Despite being a collection of exercises a priori, a large part is given over to recalling the practice. To a large extent, the book constitutes a first introduction to the thermal calculation of practical devices, which may be stand-alone. For the subsequent calculations, the reader will not be spared the use of specialist textbooks or encylopedias available in the field of thermal engineering.
The book is intended to reach a wide audience, from technicians to engineers, to researchers in many disciplines, whether physicists or not, who have a one-off transfer problem to resolve in a laboratory context. With this in mind, the theoretical developments in the text itself are as direct as possible. Specialist readers, or those who are simply curious about further theoretical developments (general