Applied Modeling Techniques and Data Analysis 2. Группа авторов

Applied Modeling Techniques and Data Analysis 2 - Группа авторов


Скачать книгу
image

      and

image

      As T → t and k → x, the second and third terms disappear. Calculating the derivative with respect to k, we obtain

image

      and Theorem 2.2 follows.

      Equation [2.6] takes the form

      [2.13]image

      The sets I2,h are I2,1 = {(2)}, I2,2 = {( 1, 1)}. We have a11,2(x,y,z) = 0. It follows that equation [2.10] with n = 2 includes only summation over the set I2,2 and takes the form

image

      While calculating the operator image using equation [2.8], we need to calculate only the coefficients of the three partial derivatives with respect to the variable x. We obtain

image

      The following integrals are important for calculations:

image image

      Calculation of the first term on the right-hand side of equation [2.13] using equation [2.11] may be left to the reader.

      Next, we calculate the left-hand side of equation [2.12] for h = 2. Using the Hermite polynomials H0(ζ) = 1, H1 (ζ) = 2ζ and H2(ζ) = 4ζ2 - 2, we obtain

image

      Combining everything together, we obtain the formula for image

      where the ellipsis denotes the terms satisfying the following condition: the limits of the term, its first partial derivative with respect to T and its first two partial derivatives with respect to k as (T,k) approaches (t,x) within image are all equal to 0.

      Gatheral, J. (2008). Consistent modelling of SPX and VIX options. The Fifth World Congress of the Bachelier Finance Society, London.

      Latané, H.A. and Rendleman Jr., R.J. (1976). Standard deviations of stock price ratios implied in option prices. J. Finance, 31(2), 369–381.

      Lorig, M., Pagliarani, S., Pascucci, A. (2017). Explicit implied volatilities for multifactor local-stochastic volatility models. Math. Finance, 27(3), 926–960.

      Orlando, G. and Taglialatela, G. (2017). A review on implied volatility calculation. J. Comput. Appl. Math., 320, 202–220.

      Pagliarani, S. and Pascucci, A. (2012). Analytical approximation of the transition density in a local volatility model. Cent. Eur. J. Math., 10(1), 250–270.

      Pagliarani, S. and Pascucci, A. (2017). The exact Taylor formula of the implied volatility. Finance Stoch., 21(3), 661–718.

      Chapter written by Mohammed ALBUHAYRI, Anatoliy MALYARENKO, Sergei SILVESTROV, Ying NI, Christopher ENGSTRǑM, Finnan TEWOLDE and Jiahui ZHANG.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SaOUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAADUcAVoAAxsl RxwBWgADGyVHHAIAAAIAABwCUAAMU2FtaSBNZW5hc2NlHAIFAAhMYXlvdXQgMQA4QklNBCUAAAAA ABAUatt5l2yLs8gZmJf0K/3eOEJJTQQ6AAAAAADlAAAAEAAAAAEAAAAAAAtwcmludE91dHB1dAAA AAUAAAAAUHN0U2Jvb2wBAAAAAEludGVlbnVtAAAAAEludGUAAAAAQ2xybQAAAA9wcmludFNpeHRl ZW5CaXRib29sAAAAAAtwcmludGVyTmFtZVRFWFQAAAABAAAAAAAPcHJpbnRQcm9vZlNldHVwT2Jq YwAAAAwAUAByAG8AbwBmACAAUwBlAHQAdQBwAAAAAAAKcHJvb2ZTZXR1cAAAAAEAAAAAQmx0bmVu dW0AAAAMYnVpbHRpblByb29mAAAACXByb29mQ01ZSwA4QklNBDsAAAAAAi0AAAAQAAAAAQAAAAAA EnByaW50T3V0cHV0T3B0aW9ucwAAABcAAAAAQ3B0bmJvb2wAAAAAAENsYnJib29sAAAAAABSZ3NN Ym9vbAAAAAAAQ3JuQ2Jvb2wAAAAAAENudENib29sAAAAAABMYmxzYm9vbAAAAAAATmd0dmJvb2wA AAAAAEVtbERib29sAAAAAABJbnRyYm9vbAAAAAAAQmNrZ09iamMAAAABAAAAAAAAUkdCQwAAAAMA AAAAUmQgIGRvdWJAb+AAAAAAAAAAAABHcm4gZG91YkBv4AAAAAAAAAAAAEJsICBkb3ViQG/gAAAA AAAAAAAAQnJkVFVudEYjUmx0AAAAAAAAAAAAAAAAQmxkIFVudEYjUmx0AAAAAAAAAAAAAAAAUnNs dFVudEYjUHhsQHLAAAAAAAAAAAAKdmVjdG9yRGF0YWJvb2wBAAAAAFBnUHNlbnVtAAAAAFBnUHMA AAAAUGdQQwAAAABMZWZ0VW50RiNSbHQAAAAAAAAAAAAAAABUb3AgVW50RiNSbHQAAAAAAAAAAAAA AABTY2wgVW50RiNQcmNAWQAAAAAAAAAAABBjcm9wV2hlblByaW50aW5nYm9vb

Скачать книгу